Role of climate and agricultural practice in determining matter discharge into large, shallow Lake Võrtsjärv, Estonia

  • Peeter NõgesEmail author
  • Marju Kägu
  • Tiina Nõges
Part of the Developments in Hydrobiology book series (DIHY, volume 194)


This article addresses how seasonal and annual matter discharge into large, shallow Lake Võrtsjärv (Estonia) is determined by climate and changes in agricultural practices. Climate variability involved increasing winter air temperatures and large inter-annual temperature and precipitation variation. Agriculture practices have transformed from high fertilizer usage (i.e. swine slurry) in the 1970s and 1980s, leading to high phosphate, ammonium, and BOD5 loadings, to low loadings after the collapse of soviet-type agriculture in the early 1990s. The 28-year monthly record on river flow and concentrations of nutrients (N, P) and dissolved organic matter (BOD5, CODMn) from four main tributaries was analysed with seasonal air temperature and precipitation data. Long-term trends in nutrient and organic matter loadings to Lake Võrtsjärv resulted from agriculture and climate changes. The change could be traced as a linear trend in loadings and a highly inter-correlated cluster of the slurry-related pollutants. Coincidental trends in air temperature and fertiliser use caused strong correlations between air temperature and pollutant loadings to the rivers, which turned nonsignificant after removing trends showing that the relationships were not based on year-to-year differences. Residual analysis revealed significant positive correlations between precipitation and annual loadings of ammonium, phosphates, and CODMn. Both components forming the load (water discharge and concentrations of substances) increased in wet years. The effect of high winter North Atlantic Oscillation Index (NAO) was expressed as more intensive river flowd uring winter months and decreased flow during the flood peak.


Large and shallow lake Climate impact Agricultural practice Discharge Nitrogen Phosphorus Dissolved organic matter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arst, H., 2003. Optical Properties and Remote Sensing of Multicomponental Water Bodies. Springer-Verlag, 238.Google Scholar
  2. Cook, E., 2003. Multi-proxy reconstructions of the North Atlantic Oscillation (NAO) index: a critical review and a new well verified NAO index reconstruction back to AD 1400. In Hurrell, J. W., Y. Kushnir, G. Ottersen & M. Visbeck (eds), The North Atlantic Oscillation: Climatic Significance and Environmental Impact. American Geophysical Union, Washington DC, 63–79.Google Scholar
  3. Curtis, P. J., 1998. Climatic and hydrologic control of DOM concentration and quality in Lakes. In Hessen, D. O. & L. J. Tranvik (eds), Aquatic Humic Substances, Vol. 133, Springer-Verlag, 93–104.Google Scholar
  4. Freeman, C., C. D. Evans, D. T. Monteih, B. Reynolds & N. Fenner, 2001. Export of organic carbon from peat soils. Nature 412: 785.PubMedCrossRefGoogle Scholar
  5. George, D. G., S. C. Maberly & D. P. Hewitt, 2004. The influence of the North Atlantic Oscillation on the physical, chemical and biological characteristics of four lakes in the English Lake District. Freshwater Biology 49(6): 760–774.CrossRefGoogle Scholar
  6. Gerten, D. & R. Adrian, 2001. Differences in the persistency of the North Atlantic Oscillation signal among lakes. Limnology & Oceanography 46: 448–455.CrossRefGoogle Scholar
  7. Haberman, J., P. Nõges, E. Pihu, T. Nõges, K. Kangur & V. Kisand, 1998. Characterization of Lake Võrtsjärv. Limnologica 28(1): 3–11.Google Scholar
  8. Hurrell, J. W., Y. Kushnir & M. Visbeck, 2001. The North Atlantic Oscillation. Science 291: 603–608.PubMedCrossRefGoogle Scholar
  9. Hurrell, J. W., Y. Kushnir, G. Ottersen, M. Visbeck, 2003. An overview of North Atlantic Oscillation. In Hurrell, J. W., Y. Kushnir, G. Ottersen & M. Visbeck (eds), The North Atlantic Oscillation: Climatic Significance and Environmental Impact. American Geophysical Union, Washington DC, 7–36.Google Scholar
  10. IPCC, 2001. Summary for Policymakers, the third assessment report: 1–18.Google Scholar
  11. Jaagus, J. 1999. Uusi andmeid Eesti kliimast. (New data about the climate in Estonia). In Jaagus, J. (ed), Uurimusi Eesti kliimast. Publicationes Instituti Geographici Universitatis Tartuensis 85: 28–40.Google Scholar
  12. Järvet, A., 2001. Veekogude klimaatilised aastaajad. Publicationes Instituti Geographici Universitatis Tartuensis 90: 48–81.Google Scholar
  13. Järvet, A., R. Karukäpp & I. Arold, 2004. Location and physico-geographical conditions of the catchment area. In Haberman, J., E. Pihu & A. Raukas (eds), Lake Võrtsjärv. Estonian Encyclopedia Publishers, Tallinn: 11–28.Google Scholar
  14. Järvet, A. & A. Laanemets, 1989. Võrtsjärv on ohus. Eesti Loodus 5: 308–312.Google Scholar
  15. Järvet, A. & A. Laanemets, 1990. Võrtsjärv kui looduslik puhastusseade. Eesti Loodus 11: 708–712.Google Scholar
  16. Jarvis, S. C., M. Sherwood, J. H. A. M. Steenvoorden, 1987. Nitrogen losses from animal manures: from grazed pastures and from applied slurry. In: van der Meer, H. G. et al. (eds), Animal Manure On Grassland And Fodder Crops. Martinus Nijhoff Publishers, The Netherlands, 195–212.Google Scholar
  17. Magnuson, J. J., K. E. Webster, R. A. Assel, C. J. Bowser, P. J. Dillon, J. D. Eaton, H. E Evans, E. J. Fee, R. I. Hall, L. R. Mortsch, D. W. Schindler & F. H. Quinn, 1997. Potential effects of climate changes on aquatic ecosystems: Laurentian Great Lakes and Precambrian Shield Region. In Cushing, C. E. (ed.), Freshwater Ecosystems and Climate Change in North America, A Regional Assessment. John Wiley & Sons, New York, 7–53.Google Scholar
  18. Mander, Ü., A. Kull, V. Kuusemets & T. Tamm, 2000. Nutrient runoff dynamics in a rural catchment: Influence of land-use changes, climatic fluctuations and ecotech-nological measures. Ecological Engineering 14: 405–417.CrossRefGoogle Scholar
  19. Monteich, D. C., C. D. Evans & B. Reynolds, 2000. Are temporal variations in the nitrate content of UK upland freshwaters linked to the North Atlantic Oscillation? Hydrological Processes 14: 1745–1749.CrossRefGoogle Scholar
  20. Nõges, T. & P. Nõges, 1999. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia 408/409: 277–283.CrossRefGoogle Scholar
  21. Nõges, T., V. Kisand, P. Nõges, A. Põllumäe, L. Tuvikene & P. Zingel, 1998. Plankton seasonal dynamics and its controlling factors in shallow polymictic eutrophic Lake Võrtsjärv, Estonia. International Review of Hydrobiology 83: 279–296.CrossRefGoogle Scholar
  22. Nõges, T., P. Nõges & R. Laugaste, 2003. Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia 506(1): 257–263.CrossRefGoogle Scholar
  23. Psenner, R. & R. Schmidt, 1992. Climate-driven pH control of remote alpine lakes and effects of acid deposition. Nature 356: 1–3.CrossRefGoogle Scholar
  24. Smith, K. A., D. R. Jackson & T. J. Pepper, 2001a. Nutrient losses by surface run-off following the application of organic manures to arable land. 1. Nitrogen. Environmental Pollution 112: 41–51.PubMedCrossRefGoogle Scholar
  25. Smith, K. A., D. R. Jackson & P. J. A. Withers, 2001b. Nutrient losses by surface run-off following the application of organic manures to arable land. 2. Phosphorus. Environmental Pollution 112: 53–60.PubMedCrossRefGoogle Scholar
  26. Straile, D., D. M. Livingstone, G. A. Weyhenmeyer & D. G. George, 2003. The response of freshwater ecosystems to climate variability associated with the North Atlantic Oscillation. In Hurrell J. W, Y. Kushnir, G. Ottersen & M. Visbeck (eds), The North Atlantic Oscillation: Climatic Significance and Environmental Impact. American Geophysical Union, Washington DC, 263–279.Google Scholar
  27. Tranvik, L. J. & M. Jansson, 2002. Climate change and terrestrial export of organic carbon. Nature 415: 861–862.CrossRefGoogle Scholar
  28. Yoo, J. C. & P. D’Odorico, 2002. Trends and fluctuations in the dates of ice break-up of lakes and rivers in Northern Europe: the effect of the North Atlantic Oscillation. Journal of Hydrology 268: 100–112.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Limnological Centre, Institute of Agricultural and Environmental SciencesEstonian Agricultural UniversityRannu, TartumaaEstonia
  2. 2.Institute of Zoology and HydrobiologyUniversity of TartuTartuEstonia

Personalised recommendations