Advertisement

Variations in kinetics of alkaline phosphatase in sediments of eutrophic, shallow, Chinese lakes

  • Yiyong ZhouEmail author
  • Xiuyun Cao
  • Chunlei Song
  • Jianqiu Li
  • Guoyuan Chen
  • Liang Peng
Part of the Developments in Hydrobiology book series (DIHY, volume 194)

Abstract

Kinetics of alkaline phosphatase in sediments of a shallow Chinese freshwater lake (Lake Donghu) were investigated. Spatially, among 20 sites sampled, V max and K m values of alkaline phosphatase in surface sediments were higher in the zone adjacent to sites with the highest chlorophyll a concentrations. Vertically, there was a peak in V max at intermediate sediment depths in addition to the expected maximum at the surface. Some inhibitors, such as CuSO4, ZnSO4 and Na2WO4, showed significantly different effects on kinetics of alkaline phosphatase in interstitial water and sediments. Moreover, alkaline phosphatase in interstitial water and sediments responded to Na2WO4 in different ways in Lake Taihu. These observations imply that the enzyme is immobilized in sediments, which became more stable with accelerated eutrophication, as suggested by highest alkaline phosphatase activity (APA) in sediments corresponding with highest water column chlorophyll a concentrations in Lake Donghu.

Keywords

Alkaline phosphatase Kinetics Sediment Eutrophication Inhibitions Immobilization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berman, T., 1970. Alkaline phosphatase and phosphorus availability in Lake Kinneret. Limnology and Oceanography 15: 663–674.CrossRefGoogle Scholar
  2. Chrost, R. J. & J. Overbeck, 1987. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterioplankton in Lake Plusssee (North German eutrophic lake). Microbial Ecology, New York, NY 13(3): 229–248.CrossRefGoogle Scholar
  3. Coolen, M. J. & J. Overmann, 2000. Functional exoenzymes as indicators of metabolically active bacteria in 124,000-year-old sapropel layers of the eastern Mediterranean Sea. Applied and Environmental Microbiology 66(6): 2589–2598.PubMedCrossRefGoogle Scholar
  4. de Vicente, I., K. Cattaneo, L. Cruz-Pizarro, A. Brauer & P. Guilizzoni, 2006. Sedimentary phosphate fractions related to calcite precipitation in an eutrophic hard-water lake (Lake Alserio, northern Italy). Journal of Paleolimnology 35: 55–64.CrossRefGoogle Scholar
  5. Golterman, H. L. & R. S. Clymo, 1969. Method for chemical analysis of fresh water. In IBP Handbook No. 8. Blackwell Sci. Publ., Oxford, 1–188.Google Scholar
  6. Hakulinen, R., M. A. Kahkonen & M. Salkinoja-Salonen, 2005. Vertical distribution of sediment enzyme activities involved in the cycling of carbon, nitrogen, phosphorus and sulphur in three boreal rural lakes. Water Research 39: 2319–2326.PubMedCrossRefGoogle Scholar
  7. Huang, Q. & H. Shindo, 2001. Comparison of the influence of Cu, Zn, and Cd on the activity and kinetics of free and immobilized acid phosphatase. Soil Science and Plant Nutrition 47: 767–772.Google Scholar
  8. Huang, Q. & H. Shindo, 2000. Inhibition of free and immobilized acid phosphatase by zinc. Soil Science 165: 793–802.CrossRefGoogle Scholar
  9. Huang, X. & J. T. Morris, 2003. Trends in phosphatase activity along a successional gradient of tidal freshwater marshes on the cooper river, South Carolina. Estuaries 26(5): 1281–1290.Google Scholar
  10. Huang, X. & J. T. Morris, 2005. Distribution of phosphatase activity in marsh sediments along an estuarine salinity gradient. Marine Ecology Progress Series 292: 75–83.CrossRefGoogle Scholar
  11. Jansson, M., H. Olsson & K. Pettersson, 1988. Phosphatases; origin, characteristics and function in lakes. Hydrobiologia 170: 157–175.Google Scholar
  12. Kobori, H. & N. Taga, 1979. Occurrence and distribution of phosphatase in neritic and oceanic sediments. Deep-Sea Research 26A: 799–808.CrossRefGoogle Scholar
  13. Koester, M., S. Dahlke & L.-A. Meyer-Reil, 1997. Microbiological studies along a gradient of eutrophication in a shallow coastal inlet in the southern Baltic Sea (Nordruegensche Bodden). Marine Ecology Progress Series 152: 27–39.CrossRefGoogle Scholar
  14. Kunito, T., K. Saeki, S. Goto, H. Hayashi, H. Oyaizu & S. Matsumoto, 2001. Copper and zinc fractions affecting microorganisms in long-term sludge-amended soils. Bioresource Technology 79: 135–146.PubMedCrossRefGoogle Scholar
  15. Kuperman, R. G. & M. Carriero, 1997. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biology and Biochemistry 29: 179–190.CrossRefGoogle Scholar
  16. Marxsen, J. & H.-H. Schmidt, 1993. Extracellular phosphatase activity in sediments of the Breitenbach, a Central European mountain stream. Hydrobiologia 253: 207–216.CrossRefGoogle Scholar
  17. Matinvesi, J. & H. Heinonen-Tanski, 1992. Biodegradable substances in lake sediments and their relation to sediment microbiological activity and phosphorus recycling. Aqua Fennica 22: 193–200.Google Scholar
  18. Olah, J. & E. O. Toth, 1978. The function of alkaline phosphatase enzyme in the phosphorus cycle of fertilized fishponds. Aquacult Hung 1: 15–23.Google Scholar
  19. Qin, B., P. Xu, Q. Wu, L. Luo & Y. Zhang, 2006. Environmental issues of Lake Taihu, China. Hydrobiologia.Google Scholar
  20. Rao, M. A. & L. Gianfreda, 2000. Properties of acid phosphatase-tannic acid complexes formed in the presence of Fe and Mn. Soil Biology and Biochemistry 32: 1921–1926.CrossRefGoogle Scholar
  21. Sabil, N., A. Cherri, D. Tagliapietra & M.-A. Colettipreviero, 1994. Immobilized enzymic activity in the Venice Lagoon sediment. Water Research 28: 77–84.CrossRefGoogle Scholar
  22. Sabil, N., D. Tagliapietra & M.-A. Coletti-Previero, 1993. Insoluble biodegradative potential of the Venice Lagoon. Environmental Technology 14: 1089–1095.CrossRefGoogle Scholar
  23. Sayler, G., S. M. Puziss & M. Silver, 1979. Alkaline phosphatase assay for freshwater sediments: Application to perturbed sediment system. Applied and Environmental Microbiology 38: 922–927.PubMedGoogle Scholar
  24. Silva, C. D. & N. B. Bhosle, 1990. Phosphorus availability and phosphatase activity in the sediments of Mandovi estuary, Goa. Indian Journal of Marine Sciences 19:143–144.Google Scholar
  25. Sinke, A. J. C., A. A. Cornelese & T. E. Cappenberg, 1991. Phosphatase activity in sediments of the Loosdrecht lakes. Internationale Vereinigung für Theoretische und Angewandte Limnologie 24: 719–721.Google Scholar
  26. Wynne, D. & A. J. H. Pieterse, 2000. The effect of copper on photosynthesis, nitrate reductase and phosphatase activities in Lake Kinneret phytoplankton. Limnology and Lake Management 55: 581–593.Google Scholar
  27. Zhang, R. Q., Q. X. Chen, R. Xiao, L. P. Xie, X. G. Zeng & H. M. Zhou, 2001. Inhibition kinetics of green crab (Scylla serrata) alkaline phosphatase by zinc ions: A new type of complexing inhibition. Biochimica et Biophysica Acta 1545: 6–12.PubMedGoogle Scholar
  28. Zhou, Y., J. Li & Y. Fu, 2000. Effects of submerged macrophytes on kinetics of alkaline phosphatase in Lake Donghu. I. Unfiltered water and sediments. Water Research 34: 3737–3742.CrossRefGoogle Scholar
  29. Zhou, Y., J. Li, Y. Fu & M. Zhang, 2001. Kinetics of alkaline phosphatase in lake sediment associated with cage-culture of Oceochrolmis miloticus. Aquaculture 203: 23–32.CrossRefGoogle Scholar
  30. Zhou, Y., J. Li, Y. Fu & M. Zhang, 2002. Temporal and spatial variations in kinetics of alkaline phosphatase in sediments of a shallow Chinese eutrophic lake (Lake Donghu). Water Research 36: 2084–2090.CrossRefGoogle Scholar
  31. Zhou, Y., J. Li, C. Song & X. Cao, 2004. Variations and possible source of potentially available phosphorus in a Chinese shallow eutrophic lake. Journal of Freshwater Ecology 19: 87–96.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Yiyong Zhou
    • 1
    Email author
  • Xiuyun Cao
    • 1
    • 2
  • Chunlei Song
    • 1
    • 2
  • Jianqiu Li
    • 1
  • Guoyuan Chen
    • 1
    • 2
  • Liang Peng
    • 1
    • 2
  1. 1.Institute of HydrobiologyThe Chinese Academy of SciencesWuhanChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations