Advertisement

Evaluation of biogenic and anthropogenic inputs of aliphatic hydrocarbons to Lake Taihu sediments using biomarkers

  • Wenchuan QuEmail author
  • Bin Xue
  • Chenwei Su
  • Sumin Wang
Part of the Developments in Hydrobiology book series (DIHY, volume 194)

Abstract

Surficial sediments from 13 sites throughout Lake Taihu, one of the largest urbanized freshwater lake systems in China, were analyzed for biomarkers (e.g., n-alkanes and hopanes) to track the origin of organic inputs (biogenic or anthropogenic), and, thus, to identify any ‘hot spots’ of hydrocarbon contamination. A distinct spatial distribution of aliphatic hydrocarbons in sediments was observed in Lake Taihu. At the northern tip of the lake (i.e., Meiliang and Wuli Bays), the highest mean aliphatic hydrocarbon concentration, with a significant contribution of an unresolved complex mixture (UCM), was found, indicating possible anthropogenic petroleum contamination (mainly from untreated and partially treated industrial and domestic sewage from Wuxi, Changzhou and other cities). This was supported by the n-alkane indices (e.g., small Carbon Preference Index and odd-to-even values) and a high degree of maturity of the hopane biomarkers. However, hydrocarbons from East Taihu were mainly biogenic, with the lowest mean concentrations, negligible or no contribution of UCM, abundance of vascular plant C23–C33 n-alkanes with a high odd-to-even predominance, and the presence of biogenic hopanes (e.g., 17β(H), 21β(H)-hopanes and hopenes). In the other areas of the lake, however, the predominance of biogenic in combination with petrogenic hydrocarbons was indicated by the biomarkers.

Keywords

Lake Taihu Sediment Biomarkers Sources Biogenic Anthropogenic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albaiges, J. & P. Albrecht, 1979. Fingerprinting marine pollutant hydrocarbons by computerized gas chromatography-mass spectrometry. International Journal of Environmental Analytical Chemistry 6: 171–190.CrossRefGoogle Scholar
  2. Barakat, A. O., A. Mostafa, Y. Qian & M. C. Kennicutt, 2002. Application of petroleum hydrocarbon chemical fingerprinting in oil spill investigation-Gulf of Suez, Egypt. Spill Science & Technology Bulletin 7: 229–239.CrossRefGoogle Scholar
  3. Boehm, P. D., 1984. Aspects of the saturated hydrocarbon geochemistry of recent sediments in the Georges Bank region. Organic Geochemistry 7: 11–23.CrossRefGoogle Scholar
  4. Colombo, J. C., E. Pelletier, C. Brochu & M. Khalil, 1989. Determination of hydrocarbons sources using n-Alkane and polyaromatic hydrocarbon distribution indexes. Case study: Rio de La Plata Estuary, Argentina. Environmental Science & Technology 23: 888–894.CrossRefGoogle Scholar
  5. Commendatore, M. G., J. L. Esteves & J. C. Colombo, 2000. Hydrocarbons in coastal sediments of Patagonia, Argentina: levels and probable sources. Marine Pollution Bulletin 40(11): 989–998.CrossRefGoogle Scholar
  6. Hong, H., L. Xu, L. Zhang, J. C. Chen, Y. S. Wong & T. S. M. Wan, 1995. Environmental fate and chemistry of organic pollutants in the sediment of Xiamen and Victoria Harbours. Marine Pollution Bulletin 31: 229–236.CrossRefGoogle Scholar
  7. Hostettler, F. D., W. E. Pereira, K. A. Kvenvolden, A. Geen, S. N. Luoma, C. C. Fuller & R. Anima, 1999. A record of hydrocarbon input to San Francisco Bay as traced by biomarker profiles in surface sediment and sediment cores. Marine Chemistry 64: 115–127.CrossRefGoogle Scholar
  8. Hostettler, F. D., J. B. Rapp, K. A. Kvenvolden & S. N. Luoma, 1989. Organic markers as source discriminants and sediment transport indicators in south San Francisco Bay, California. Geochimica et Cosmochimica Acta 53: 1563–1576.CrossRefGoogle Scholar
  9. Marr, I. L. & M. S. Cresser, 1983. Environmental Chemical Analysis. Blackie & Son Ltd, London: 258.Google Scholar
  10. Mazurek, M. A. & B. R. T. Simoneit, 1984. Characterization of biogenic and petroleum-derived organic matter in aerosols over remote, rural and urban areas. Ann Arbor Science. Boston: 353–378.Google Scholar
  11. Qin, B. Q, P. Z. Xu, Q. L. Wu, L. C. Luo & Y. L. Zhang, 2007. Environmental issues of Lake Taihu, China. Hydrobiologia 581: 3–14.CrossRefGoogle Scholar
  12. Qu, W. C., M. Dickman, C. X. Fan, S. M. Wang, C. W. Su, L. Zhang & H. X. Zou, 2002. Distribution, sources and potential toxicological significance of polycyclic aromatic hydrocarbons (PAHs) in Lake Taihu sediments, China. Hydrobiologia 485: 163–171.CrossRefGoogle Scholar
  13. Qu, W. C., M. Dickman, S. M. Wang & R. J. Wu, 1999. Evidence for an aquatic origin of ketones found in Lake Taihu sediments. Hydrobiologia 397: 149–154.CrossRefGoogle Scholar
  14. Qu, W. C., M. Dickman, S. M. Wang, R. J. Wu, P. Z. Zhang, J. F. Chen & H. J. He, 1998. Lake typology based on the use of sediment alkanes in the east and west basins of Lake Taihu, China. Hydrobiologia 364: 219–223.Google Scholar
  15. Sun, S. C. & Y. P. Huang, 1993. Taihu. The Ocean Press, Beijing: 271.Google Scholar
  16. TBA, 1998. Eutrophication Assessment of Lake Taihu-Report of China-Japan Co-operation Project in Lake Taihu. Taihu Basin Authority, Shanghai, 200 pp.Google Scholar
  17. Zanardi, E., M. C. Bicego, L. B. Miranda & R. R. Weber, 1999. Distribution and origin of hydrocarbons in water and sediment in Sao Sebastiao, SP, Brazil. Marine Pollution Bulletin 38(4): 261–267.CrossRefGoogle Scholar
  18. Zou, H. X., G. Y. Sheng, C. Sun & O. Y. Xu, 1996. Distribution of organic contaminants in Lake Taihu. Water Research 30: 2003–2008.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Key Laboratory of Lake Sediment & EnvironmentChinese Academy of SciencesNanjingChina
  2. 2.Australian Bureau of StatisticsCanberraAustralia
  3. 3.Research School of Biological SciencesThe Australian National UniversityCanberraAustralia

Personalised recommendations