Preventing Genetic Pollution and the Establishment of Feral Populations: A Molecular Solution

  • Peter M. Grewe
  • Jawahar G. Patil
  • Daniel J. McGoldrick
  • Peter C. Rothlisberg
  • Steven Whyard
  • Lyn A. Hinds
  • Chris M. Hardy
  • Soma Vignarajan
  • Ron E. Thresher
Part of the Methods and Technologies in Fish Biology and Fisheries book series (REME, volume 6)

Aquaculture animals that escape from farms have the potential to create major environmental problems. These include establishment of potentially destructive feral populations (e.g., Pacific oysters [Crassostrea gigas] in Australia, Atlantic salmon [Salmo salar] in British Columbia) and genetic contamination of wild stocks. The latter includes introgression of foreign genes into natural populations from both hatchery-reared fish and genetically modified fish and invertebrates. Concern about these environmental and genetic effects has already led to restrictions on aquaculture industry development and is likely to grow as demand for genetically improved stocks escalates to fulfill production objectives. To circumvent these problems, we have developed a genetic construct that, when properly integrated into production-line fish or invertebrates, should render individuals functionally sterile outside of hatchery conditions. In the hatchery, however, provision of a simple repressor compound at a particular life-history stage allows the animals to be bred and reared as normal. We are developing this “Sterile Feral” technology for both invertebrate and fish species, and we anticipate practical commercial application within a few years.


Atlantic Salmon Pacific Oyster Blocker Sequence Blocker Gene Feral Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bosher, J.M., and M. Labouesse. 2000. RNA interference: genetic wand and genetic watchdog. Nature Cell Biology 2: 31–36.CrossRefGoogle Scholar
  2. Davis, P.R. 1996. Parliamentary Investigation into the Farming of Pacific Oysters in Victorian Coastal Waters. Department of Natural Resources and Environment, Victoria, Australia. 84 pp.Google Scholar
  3. Fire, A., S. Xu, M.K. Montogomery, S.A. Kostas, S.E. Driver, and C.C. Mello. 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806–811.CrossRefPubMedGoogle Scholar
  4. Gossen, M., and H. Bujard. 1992. Tight control of gene expression in mammalian cells by tetracycline responsive promoters. Proceedings of the National Academy Sciences, USA 89: 5547–5551.CrossRefGoogle Scholar
  5. Gossen, M., S. Freundlieb, G. Bender, G. Muller, W. Hillen, and H. Bujard. 1995. Transcriptional activation by tetracycline in mammalian cells. Science 268: 1766–1769.CrossRefPubMedGoogle Scholar
  6. Guo, X., and S.K. Allen, Jr. 1994a. Viable tetraploids in the Pacific oyster (Crassostrea gigas Thunberg) produced by inhibiting polar body 1 in eggs from triploids. Molecular Marine Biology and Biotechnology 3: 42–50.Google Scholar
  7. Guo, X., and S.K. Allen, Jr. 1994b. Reproductive potential and genetics of triploid Pacific oysters, Crassostrea gigas (Thunberg). Biological Bulletin 187: 309–318.CrossRefGoogle Scholar
  8. Guo, X., and S.K. Allen, Jr. 1997. Sex and meiosis in the autotetraploid Pacific oyster, Crassostrea gigas (Thunberg). Genome 40: 397–405.CrossRefPubMedGoogle Scholar
  9. Guo, X., G.A. DeBrosse, and S.K. Allen, Jr. 1996. All-triploid Pacific oysters (Crassostrea gigas Thunberg) produced by mating tetraploids and diploids. Aquaculture 142: 149–161.CrossRefGoogle Scholar
  10. Hindar, K. 1999. Introductions at the level of genes and populations. In: O.T. Sandlund, P.J. Schei, and A. Viken (eds.), Invasive Species and Biodiversity Management. Kluwer Academic Publishers, Dordrecht, The Netherlands. Pp. 149–161.Google Scholar
  11. Hindar, K., N. Ryman, and F. Utter. 1991. Genetic effects of cultured fish on natural fish populations. Canadian Journal of Fisheries and Aquatic Sciences 48: 945–957.CrossRefGoogle Scholar
  12. Holliday, J.E., and J.A. Nell. 1987. The Pacific oyster in New South Wales. AGFACT F2.1.3, Department of Agriculture, Sydney, New South Wales, Australia. 4 pp.Google Scholar
  13. Izant, J.G., and H. Weintraub. 1984. Inhibition of thymidine kinase gene expression by anti-sense RNA: a molecular approach to genetic analysis. Cell 36: 1007–1015.CrossRefPubMedGoogle Scholar
  14. Jousson, O., J. Pawlowski, L. Zaninetti, A. Meinez, and C.F. Boudouresque. 1998. Molecular evidence for the aquarium origin of the green alga Caulerpa taxifolia introduced to the Mediterranean Sea. Marine Ecology Progress Series 172: 275–280.CrossRefGoogle Scholar
  15. Kistner, A., M. Gossen, F. Zimmermann, J. Jerecic, C. Ullmer, H. Lubbert, and H. Bujard. 1996. Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proceedings of the National Academy of Sciences, USA 93: 10933–10938.CrossRefGoogle Scholar
  16. Masood, E. 1999. Compromise sought on “Terminator”. Nature 399: 721.CrossRefGoogle Scholar
  17. Medcof, J.C., and P.H. Wolf. 1975. Spread of Pacific oyster worries NSW culturists. Australian Fisheries 34: 32–38.Google Scholar
  18. Meinez, A. 1999. Killer Algae. University of Chicago Press, Chicago, Illinois, USA. 360 pp.Google Scholar
  19. Meinez, A., J.-M. Cottalorda, D. Chiaverini, N. Cassar, and J. de Vaugelas. 1998. Suivi de L'invasion de L'algue Tropicale Caulerpa taxifolia en Méditerranée: Situation au 31 Décembre 1997. Laboratoire Environnement Marin Littoral, University of Nice-Sophia, Antipolis, France. 238 pp.Google Scholar
  20. Naylor, R.L., R.J. Goldburg, J.H. Primavera, N. Kautsky, M.C.M. Beveridge, J. Clay, C. Folke, J. Lubchenco, H. Mooney, and M. Troel. 2000. Effect of aquaculture on world fish supplies. Nature 405: 1017–1024.CrossRefPubMedGoogle Scholar
  21. Niiler, E. 1999. Terminator technology temporarily terminated. Nature Biotechnology 17: 1054.CrossRefPubMedGoogle Scholar
  22. Niiler, E. 2000. FDA, researchers consider first transgenic fish. Nature Biotechnology 18 (2): 143.CrossRefPubMedGoogle Scholar
  23. Oliver, M.J., J.E. Quisenberry, N.L.G. Trolinder, D.L. Keim. 1998. Control of plant gene expression. United States Patents 5: 723–765.Google Scholar
  24. Pauly, D., V. Christensen, J. Dalsgaard, R. Froese, and F. Torres, Jr. 1998. Fishing down marine food webs. Science 279: 860–863.CrossRefPubMedGoogle Scholar
  25. Reichhardt, T. 2000. Will souped-up salmon sink or swim? Nature 406: 10–12.CrossRefPubMedGoogle Scholar
  26. Saegrov, H., K. Hindar, S. Kalas, and H. Lura. 1997. Escaped farmed Atlantic salmon replace the original salmon stocks in the River Vosso, western Norway. ICES Journal of Marine Science 54: 1166–1172.Google Scholar
  27. Service, R.F. 1998. Seed-sterilizing “terminator technology” sows discord. Science 28: 850–851.CrossRefGoogle Scholar
  28. Stoffregen, D.A., P.R. Bowser, and J.G. Babish. 1996. Antibacterial chaemotherapeutants for finfish aquaculture: a synopsis of laboratory and field efficacy and safety studies. Journal of Aquatic Animal Health 8: 181–207.CrossRefGoogle Scholar
  29. Sumner, C.E. 1974. Oysters and Tasmania, Part 2. Tasmanian Fisheries Research 3: 1–12.Google Scholar
  30. Thomas, D.D., C.A. Donelly, R.J. Wood, and L.S. Alphey. 2000. Insect population control using a dominant, repressible, lethal genetic system. Science 287: 2474–2476.CrossRefPubMedGoogle Scholar
  31. Thomson, J.M. 1952. The acclimatization and growth of the Pacific oyster (Gryphaea gigas) in Australia. Australian Journal of Marine and Freshwater Research 3: 64–73.CrossRefGoogle Scholar
  32. Thomson, J.M. 1959. The naturalization of the Pacific oyster in Australia. Australian Journal of Marine and Freshwater Research 10: 144–149.CrossRefGoogle Scholar
  33. van Gelder, T. 1998. Oysters un-natural. The Weekend Australian, August 1–2, 1998.Google Scholar
  34. Waterhouse, P.M., M.W. Graham, and M.B. Wang. 1998. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proceedings of the National Academy of Sciences, USA 95: 13959–13964.CrossRefGoogle Scholar
  35. Xie, Y., X. Chen, and T.E. Wagner. 1997. A ribozyme-mediated, gene “knockdown” strategy for the identification of gene function in zebrafish. Proceedings of the National Academy of Sciences, USA 95: 13777–13781.CrossRefGoogle Scholar
  36. Yin-Xiong, L., M.J. Farell, R. Lie, N. Mohanty, and M.L. Kirby. 2000. Double-stranded RNA injection produces null phenotypes in zebrafish. Developmental Biology 217: 394–405.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Peter M. Grewe
    • 1
  • Jawahar G. Patil
    • 1
  • Daniel J. McGoldrick
    • 2
  • Peter C. Rothlisberg
    • 3
  • Steven Whyard
    • 4
  • Lyn A. Hinds
    • 5
  • Chris M. Hardy
    • 5
  • Soma Vignarajan
    • 6
  • Ron E. Thresher
    • 7
  1. 1.CSIRO Marine and Atmospheric ResearchHobartAustralia
  2. 2.University of Colorado Health Science Center at FitzsimonsAuroraUSA
  3. 3.CSIRO Division of Marine and Atmospheric ResearchClevelandAustralia
  4. 4.Department of ZoologyUniversity of ManitobaWinnipegCanada
  5. 5.CSIRO EntomologyAustralia
  6. 6.CSIRO Livestock IndustriesArmidaleAustralia
  7. 7.CSIRO Marine and Atmospheric ResearchHobartAustralia

Personalised recommendations