Using Natural Ecosystem Services to Diminish Salmon-Farming Footprints in Southern Chile

  • Doris Soto
  • Fernando Jara
Part of the Methods and Technologies in Fish Biology and Fisheries book series (REME, volume 6)

Through field observations and a compilation of several manipulative and mensurative experiments carried out in freshwater and marine ecosystems in southern Chile, we here provide alternatives for using natural ecosystem services to diminish salmonfarming ecological footprints. In freshwater lakes, where early stages of salmon growth are completed, the high filter-feeding rate of the native bivalve, Diplodon chilensis, can significantly reduce the effect of salmon farming by maintaining oligotrophic conditions. The constant movements of D. chilensis on the bottom sediment substrate generate enough bioturbation to reduce the impact of nutrient accumulation (nitrogen and phosphorus) due to salmon farming. We documented a similar mitigating effect in marine mussel (Aulacomya ater) beds, on rocky substrates in the channels and fjords where salmon are grown in pens. There is an additional benefit in such cases because A. ater is a valuable commercial resource. Artificial reefs, both in lakes and the inner sea, provide refuges for crustaceans and fish. In particular, these artificial structures enhance juvenile recruitment of invertebrates and fish. In freshwater ecosystems, native endemic crustaceans (crabs [Aegla sp.] and crayfish [Samastacus spinifrons]) are capable of processing excess food deposited on the bottom from salmon pens. Marine crabs (Cancer edwardsi) perform a similar ecological role under salmon pens in the inner sea. In summary, artificial reefs provide a way to link salmon farming with bottom heterogeneity and thus reduce the impacts of the salmon farms by facilitating the incorporation of organic matter into benthic productivity. Excess food is utilized around salmon-farm pens by both native fish and escaped salmon. These fishes, in turn, are prime targets for sport fishing, which, if managed in an appropriate way, could become an effective way to remove assimilated nutrients and organic matter via the removal of fish, which are at the top of the food web. This practice would have the additional benefit of removing salmon that have escaped from culture pens, particularly if the fishery was conducted around the pens.


Rainbow Trout Atlantic Salmon Control Site Brown Trout Ecological Footprint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackefors, H., and M. Enell. 1990. Discharge of nutrients from Swedish fish farming to adjacent areas. Ambio 19: 28–35.Google Scholar
  2. Campos, J.A., and C. Gamboa. 1989. An artificial tire-reef in tropical marine systems: a management tool. Bulletin of Marine Science 44: 757–766.Google Scholar
  3. Folke, C., N. Kaustsky, H. Berg, A. Jansson, and M. Troell. 1997. The ecological footprint concept for sustainable seafood production: a review. Ecological Applications 8 (1, Supplement): 63–71.CrossRefGoogle Scholar
  4. Jara, F., and R. Cespedes. 1994. An experimental evaluation of habitat enhancement on homogeneous marine bottoms in southern Chile. Bulletin of Marine Science 55: 295–307.Google Scholar
  5. Jones, C., J.H. Lawton, and M. Shachak. 1994. Organisms as ecosystem engineers. Oikos 69: 373–386.CrossRefGoogle Scholar
  6. Palma, R. 1996. Ensambles de Peces en el Lago Llanquihue y su Respuesta Frente a la Perturbación Producida por la Salmonicultura. M.S. Thesis, Department of Science, Area of Limnology, Universidad Austral de Chile, Facultad de Ciencias, Puerto Monte, Chile. 93 pp.Google Scholar
  7. Persson, L. 1994. Natural patterns of shifts in fish communities—mechanisms and constrains on perturbation sustenance. In: G. Cowx (ed.), Rehabilitation of Freshwater Fisheries. Fishing News Books, Blackwell Scientific, London, England. Pp. 421–434.Google Scholar
  8. Persson, L., S. Diehl, L. Johansson, G. Adersson, and S.F. Hamrin. 1992. Trophic interactions in temperate lake ecosystems—a test of food chain theory. American Naturalist 140: 59–84.CrossRefGoogle Scholar
  9. Prins, T.C., and A.C. Smaal. 1994. The role of the blue mussel Mytilus edulis in the cycling of nutrients in the Oosterschelde estuary (the Netherlands). Hydrobiologia 282: 413–429.Google Scholar
  10. Salmon Farmers Association. 2003. Electronic database. Website:
  11. Sandnes, K., and A. Ervik. 1999. Industrial marine fish farming. In: N. Svennevig, H. Reinertsen, and M. New (eds.), Sustainable Aquaculture. A.A. Balkema, Lisse, The Netherlands. Pp. 97–108.Google Scholar
  12. Soto, D., and H. Campos. 1995. Los lagos oligotroficos asociados al bosque templado húmedo del sur de Chile. In: J.A. Armesto, M.T. Khalin, and C. Villagran (eds.), Ecología del Bosque Chileno. Editorial Universitaria, Santiago, Chile. Pp. 134–148.Google Scholar
  13. Soto, D., and G.P. Mena. 1999. Filter feeding by the freshwater mussel Diplodon chilensis as a biocontrol of salmon farming eutrophication. Aquaculture 171: 65–81.CrossRefGoogle Scholar
  14. Soto, D., F. Jara, and P. Mena. 1995. Investigación sobre la Utilización de Diplodones y Crustáceos para la Depuración de Aguas. Informe Subsecretaría de Pesca, Valparaiso, Chile. 98 pp.Google Scholar
  15. Soto, D., R. Palma, and I. Arismendi. 1996. Evaluación y Manejo de la Biomasa de Salmonídeos en el Lago Llanquihue. Informe Fondos de Desarrollo Regional. Gobierno Regional de los Lagos, Puerto Montt, Chile. 98 pp.Google Scholar
  16. Soto, D., F. Jara, and C. Molinet. 1999. Herramientas Metodológicas para Definir los Usos de Áreas con Bancos Naturales en la XI Región. Fondo de Investigación Pesquera 97–41. Reporte Subsecretaría de Pesca—Chile, Valparaiso, Chile. 122 pp.Google Scholar
  17. Soto, D., F. Jara, and C. Moreno. 2002a. Escaped salmon in the Chiloé and Aysen inner seas, southern Chile: facing ecological and social conflicts. Ecological Applications 11: 1750–1762.CrossRefGoogle Scholar
  18. Soto, D., I. Arismendi, J. Sanzana, and I. Solar. 2002b. Estudio del Ciclo Reproductivo de las Principales Especies Objetivo de la Pesca Deportiva en la X Región, Chile. Informe Fondo de Investigación Pesquera 2000–24. Fondo de Investigación Pesquera, Valparaiso, Chile. 121 pp.Google Scholar
  19. Soto, D., I. Arismendi, J. Gonzalez, E. Guzman, J. Sunzana, F. Jara, C. Jara and A. Lara. 2006. Southern Chile, trout and salmon country: invasion pattern and threats for native species. Revista Chilena de Historia Natural, 79: 97–117.CrossRefGoogle Scholar
  20. Stirling, H.P., and I. Okumus. 1995. Growth and production of mussels (Mytilus edulis L.) suspended at salmon cages and shellfish farms in two Scottish sea lochs. Aquaculture 134: 193–210.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Doris Soto
    • 1
  • Fernando Jara
    • 2
  1. 1.Fisheries and Aquaculture Department Food and Agriculture Organization of the United NationsAquaculture Management and Conservation ServiceItaly
  2. 2.Universidad San SebastiánChile

Personalised recommendations