Organic “Soft“ Materials

  • Bradley D. Fahlman


Take a minute to look at the room and furnishings around you. Virtually everything you will see is at least partially comprised of organic-based building blocks. From the plastics that surround electronic components to individual carpet fibers, no other type of material is as heavily utilized in our society as organic-based polymers. As first defined by Staudinger in 1920, a polymer is any material that is comprised of an extended structure of small chemical repeat units, known as monomers. For simplicity, the monomeric unit is almost always clearly identified within the polymer name (i.e., “poly(monomeric unit),” Figure 5.1). A polymer is generally comprised of more than 100 repeat units; structures with lower numbers of chemical repeat units are known as oligomers. Strictly speaking, all solid-state materials with an infinite structural array are classified as polymers – even inorganic structures such as metals, ceramics, and glasses. However, since we have described inorganic-based materials in previous chapters, we will focus our present discussion on polymeric materials that feature a carbon-containing backbone.


Polymer Chain Prussian Blue Hyperbranched Polymer Dendritic Polymer Polymer Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    It should be noted that melting points refer to the temperature required to separate molecules from one another. By contrast, the glass-transition temperature refers to the temperature required to perturb the bonds of the polymer backbone.Google Scholar
  2. 2.
    Gel-permeation chromatography (GPC) is a subdivision of size-exclusion chromatography (SEC), in which macromolecular species are separated from one another based on their size. As its name implies, GPC employs a gel (usually cross-linked polystyrene) as the stationary phase, with detection through either light-scattering or refractive index.Google Scholar
  3. 3.
    Harlan, C. J.; Bott, S. G.; Barron, A. R. J. Am. Chem. Soc., 1995, 117, 6465.CrossRefGoogle Scholar
  4. 4.
    In general, high molecular weight polymers are typically formed from catalysts derived from early transition metals (Groups 4-6). For late transition metals, the β-hydride elimination mechanism is more preferred, leading to greater numbers of oligomers and dimers.Google Scholar
  5. 5.
    Meijer, D. Fall 2006 ACS meeting, Midland, MI.Google Scholar
  6. 6.
    Flory, P. J. J. Am. Chem. Soc., 1952, 74, 2718.CrossRefGoogle Scholar
  7. 7.
    (a) Buhleier, E.; Wehner, W.; V ögtle, F. Synthesis, 1978, 155. (b) Moors, R.; V ögtle, F. Chem. Ber., 1993,126,2133. (c) V ögtle, F.; Weber, E. Angew. Chem. Int. Ed. Engl., 1974, 13, 814.Google Scholar
  8. 8.
    (a) Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J., 1985, 17, 117. (b) Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Macromolecules, 1986, 19, 2466. (c) Tomalia, D. A.; Hall, M.; Hedstrand, D. J. Am. Chem. Soc., 1987, 109, 1601. (d) Tomalia, D. A.; Berry, V.; Hall, M.; Hedstrand, D. M. Macromolecules, 1987, 20, 1164. (e) Tomalia, D. A. et al. US Patents 4,587,392 (1986); 4,558,120 (1985); 4,568,737 (1986); 4,599,400 (1986); 4,631,337 (1986); 4,507,466 (1985). (f) For an extensive review, see: Tomalia, D. A.; Naylor, A. M.; Goddard III, W. A. Angew. Chem. Int. Ed. Engl., 1990, 29, 138.Google Scholar
  9. 9.
    It should be noted that Robert Denkwalter and coworkers from Allied Corporation were granted the first patent for dendrimers (US Patent 4,410,688 - filed 11 December 1981 and published 18 October 1982:, which represents the first dendrimer-related publication. However, the term “dendrimer” can be traced back to A. J. Vogel. The generally accepted definition of dendrimers is highly branched and monodisperse polymers (particularly for convergent growth), with a degree of branching of 1.0.
  10. 10.
    (a) Newkome, G. R.; Yao, Z.; Baker, Z. R.; Gupta, V. K.;. Org. Chem., 1985, 50, 2004. (b) Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K.; Russo, P. S.; Saunders, M. J. J. Am. Chem. Soc., 1986, 108, 849. (c) Newkome, G. R.; Baker, G. R.; Saunders, M. J.; Russo, P. S.; Gupta, V. K.; Yao, Z.; Miller, J. E.; Bouillion, K. J. Chem. Soc., Chem. Commun., 1986, 752.Google Scholar
  11. 11.
    (a) Hawker, C. J.; Frechet, J. M. J. J. Am. Chem. Soc., 1990, 112, 7638. (b) Hawker, C. J.; Frechet, J. M. J. Macromolecules, 1990, 23, 4726. (c) Wooley, K. L.; Hawker, C. J.; Frechet, J. M. J. J. Am. Chem. Soc., 1991, 113, 4252.Google Scholar
  12. 12.
    (a) Dvornic, P. R.; de Leuze-Jallouli, A. M.; Owen, M. J.; Perz, S. V. Macromolecules, 2000, 33, 5366. (b) Dvornic, P. R.; Li, J.; de Leuze-Jallouli, A. M.; Reeves, S. D.; Owen, M. J. Macromolecules, 2002, 35,9323.Google Scholar
  13. 13.
    De Gennes, P. G.; Hervet, H. J. Phys. Lett., 1983, 44, 351-360.CrossRefGoogle Scholar
  14. 14.
    In 2,000 B.C., magnetic stones are mentioned in the oldest medical textbook ever discovered – the Yellow Emperor’s Classic of Internal Medicine. Over 2,500 years ago, a shepherd named Magnes found mineral stones sticking to the metal nails in his sandals; he called the mineral magnetite.Google Scholar
  15. 15.
    (a) Miller, J. S.; Calabrese, J. C.; Epstein, A. J.; Bigelow, R. W.; Zhang, J. H.; Reiff, W. M. J. Chem. Soc., Chem. Commun., 1986, 1026. (b) Miller, J. S.; Epstein, A. J. Angew. Chem. Int. Ed. Eng., 1994, 33,385. (c) Miller, J. S.; Epstein, A. J. Chem. Eng. News, 1995, 73(40), 30. (d) Manriquez, J. M.; Yee, G. T.; McLean, R. S.; Epstein, A. J.; Miller, J. S. Science, 1991, 252, 1415. (e) Miller, J. S.; Epstein, A. J. J. Chem. Soc., Chem. Commun., 1998, 1319. (f) Pokhodnya, K. I.; Epstein, A. J.; Miller, J. S. Adv. Mater., 2000, 12, 410. (g) Hatlevik, O.; Buschmann, W. E.; Zhang, J.; Manson, J. L.; Miller, J. S. Adv. Mater., 1999, 11, 914. (h) Miller, J. S. Inorg. Chem., 2000, 39, 4392. 16 Beltran, L. M. C.; Long, J. R. Acc. Chem. Res., 2005, 38, 325.Google Scholar
  16. 17.
    Vickers, E. B.; Selby, T. D.; Thorum, M. S.; Taliaferro, M. L.; Miller, J. S. Inorg. Chem., 2004, 43, 6414.CrossRefGoogle Scholar
  17. 18.
    (a) Verdaguer, M.; Bluezen, A.; Marvaud, V.; Waissermann, J.; Seuleimann, M.; Desplanches, C.; Scuiller, A.; Train, C.; Garde, R.; Gelly, G.; Lomenech, C.; Rosenman, I.; Veillet, P.; Cartier, C.; Sato, O.; Einaga, Y.; Iyoda, T.; Fujishima, A.; Hashimoto, K. J. Electrochem. Soc., 1997, 144, L11. (b) Einaga, Y.; Sato, O.; Ohkoshi, S.; Fujishima, A.; Hashimoto, K. Chem. Lett., 1998, 585.Google Scholar
  18. 19.
    For a very nice review on 3D cyanide-based magnets see: Miller, J. S. MRS Bull., 2000, 11, 60.Google Scholar
  19. 20.
    Howell, B. A. Presented in part at the 15th International Conference on Advances in Additives and Modifiers for Polymers and Blends, Las Vegas, NV, February, 2006.Google Scholar
  20. 21.
    Rule, J. D.; Brown, E. N.; Sottos, N. R.; White, S. R.; Moore, J. S. Adv. Mater., 2005, 17, 205.CrossRefGoogle Scholar
  21. 22.
    Hasenwinkel, J. M.; Lautenschlager, E. P.; Wixson, R. L.; Gilbert, J. L. J. Biomed. Mater. Res., 2002, 59,411.CrossRefGoogle Scholar
  22. 23.
    Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. Science, 2002, 295,1698.CrossRefGoogle Scholar

Further Reading

  1. 1. - great webpage that provides definitions and historical anecdotes of all of the major classes of polymer resins.
  2. 2.
    Al-Malaika, S.; Golovoy, A.; Wilkie, C. A. ed. Chemistry and Technology of Polymer Additives, Blackwell Science: Malden, MA, 1999.Google Scholar
  3. 3.
    Allcock, H. R.; Lampe, F. W.; Mark, J. E. Contemporary Polymer Chemistry, 3rd ed., Prentice-Hall: New Jersey, 2003.Google Scholar
  4. 4.
    Painter, P. C.; Coleman, M. M. Fundamentals of Polymer Science, 2nd ed., CRC: New York, 1997.Google Scholar
  5. 5.
    Flory, P. J. Principles of Polymer Chemistry, Cornell University Press: Ithaca, NY, 1953.Google Scholar
  6. 6.
    Odian, G. Principles of Polymerization, 3rd ed., Wiley: New York, 1991.Google Scholar
  7. 7.
    Young, R. J.; Lovell, P. A. Introduction to Polymers, 2nd ed., CRC: New York, 2000.Google Scholar
  8. 8.
    Stevens, M. P. Polymer Chemistry: An Introduction, 3rd ed., Oxford University Press: Oxford, 1998.Google Scholar
  9. 9.
    Fortin, J. B.; Lu, T. -M. Chemical Vapor Deposition Polymerization: The Growth and Properties of Parylene Thin Films, Springer: Berlin Heidelberg New York, 2003.Google Scholar
  10. 10.
    Hsieh, H.; Quirk, R. P. Anionic Polymerization, CRC: New York, 1996.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Bradley D. Fahlman
    • 1
  1. 1.Central Michigan UniversityMount PleasantUSA

Personalised recommendations