Living in a Constructal Environment
  • Frithjof A. S. Sterrenburg
  • Richard Gordon
  • Mary Ann Tiffany
  • Stephen S. Nagy
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

Diatoms (Bacillariophyta) are diploid eukaryotic unicellular algae with a wide range of regular and decorative shapes (Plate 1) that are now placed in the Heterokontophytes by botanists or the Stramenopiles by zoologists (Medlin et al., 1997). Using oxygenated carotenoids as light-harvesting pigments, they are generally photo-autotrophic, although there are N-heterotrophic species. Diatoms occur in very large populations in both freshwater and marine environments, in all climatic zones. They have been a very successful group from an early moment in their history. While claims of observations in Permian or even in Carboniferous deposits (Zanon, 1930) were spurious, the group’s origin is generally placed in the Jurassic, as in Round et al. (1990). The oldest fossil records are of marine species – some hardly different from modern ones, others without surviving relatives – and in deposits from the Cretaceous both species diversity and number of specimens can already be impressive (Harwood and Nikolaev, 1995).


Diatom Species Great Salt Lake Internal View Diatom Flora Thalassiosira Pseudonana 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldrich, T.W. and Paul, D.S. (2002). Avian ecology of Great Salt Lake. In: J.W. Gwynn, Great Salt Lake: An Overview of Change, Special Publication, Utah Department of Natural Resources, Salt Lake City, pp. 343-374.Google Scholar
  2. Alverson, A., Theriot, E. and Jansen, R. (2003). Phylogeny of Thalassiosirales based on DNA sequences. In: E. Gaiser, 17th North American Diatom Symposium (presentation, no page numbers).Google Scholar
  3. Alverson, A.J. and Theriot, E.C. (2005). Comments on recent progress toward reconstructing the diatom phylogeny. Journal of Nanoscience and Nanotechnology 5(1), 57-62.CrossRefPubMedGoogle Scholar
  4. Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, S., Allen, A.E., Apt, K.E., Bechner, M., Brzezinski, M.A., Chaal, B.K., Chiovitti, A., Davis, A.K., Demarest, M.S., Detter, J.C., Glavina, T., Goodstein, D., Hadi, M.Z., Hellsten, U., Hildebrand, M., Jenkins, B.D., Jurka, J., Kapitonov, V.V., Kröger, N., Lau, W.W., Lane, T.W., Larimer, F.W., Lippmeier, J.C., Lucas, S., Medina, M., Montsant, A., Obornik, M., Parker, M.S., Palenik, B., Pazour, G.J., Richardson, P.M., Rynearson, T.A., Saito, M.A., Schwartz, D.C., Thamatrakoln, K., Valentin, K., Vardi, A., Wilkerson, F.P. and Rokhsar, D.S. (2004). The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306(5693), 79-86.CrossRefPubMedGoogle Scholar
  5. Bach, K. and Burkhardt, B. (eds.) (1984). Diatomeen I, Schalen in Natur und Technik/Diatoms I, Shells in Nature and Technics, Cramer Verlag, Stuttgart.Google Scholar
  6. Baudrimont, R. (1973). Recherches sur les diatomees des eaux continentales de l’Algerie, ecologie et paleoecologie. Memoires de la Societe Naturelle de l’Afrique du Nord. Nouvelle series (2), 1-265.Google Scholar
  7. Bejan, A. (2000). Shape and Structure, from Engineering to Nature, Cambridge University Press, Cambridge.Google Scholar
  8. Bejan, A. (2005). The constructal law of organization in nature: tree-shaped flows and body size. Journal of Experimental Biology 208(Pt9), 1677-1686.Google Scholar
  9. Bennett, G.F. (1989). Spirogregarina fusiformis Wood and Herman, 1943, a diatom misidentified as an avian blood parasite. Journal of Parasitology75(4),636.Google Scholar
  10. Biggs, B. (2006). A New Zealand Science response to help manage Didymosphenia geminata - an unwanted diatom invader of freshwaters. In: B. Wiltshire and S. Spaulding, Western Division, American Division of Fisheries Society Annual Meeting, Special Didymosphenia Symposium, May 15-16, 2006, Bozeman, Montana
  11. Bock, W. (1963). Diatomeen extrem trockener Standorte. Nova Hedwigia 5, 199-254.Google Scholar
  12. Bock, W. (1970). Felsen und Mauern als Diatomeen-Standorte. Beih. Nova Hedwigia 31, 395-442.Google Scholar
  13. Bothwell, M.L., Sherbot, D.M.J., Deniseger, J., Wright, H., Lynch, D. and Kelly, D.J. (2006). Blooms of Didymosphenia geminata in rivers on Vancouver Island 1990 to present: a sign of environmental change or a new invasive species? In: B. Wiltshire and S. Spaulding, Western Division, American Division of Fisheries Society Annual Meeting, Special Didymosphenia Symposium, May 15-16, 2006, Bozeman, Montana.
  14. Chalmers, M.O., Harper, M.A. and Marshall, W.A. (1996). An Illustrated Catalogue of Airborne Microbiota from the Maritime Antarctic, Turpin Distribution Services Ltd, Blackhorse Rd, Letchworth, SG6 1HN, UK.Google Scholar
  15. Cleve, P.T.(1894-1896). Synopsis of the naviculoid diatoms, Kongliga Svenska Vetenskaps-Akademiens Handlingar, Ny Följd. Stockholm.Google Scholar
  16. DeNicola, D.M. (2000). A review of diatoms found in highly acidic environments. Hydrobiologia 433(1-3), 111-122.CrossRefGoogle Scholar
  17. Drum, R.W. and Gordon, R. (2003). Star Trekreplicators and diatom nanotechnology. TibTech (Trends in Biotechnology) 21(8), 325-328.Google Scholar
  18. Fox, M.G. and Sorhannus, U.M. (2003). RpoA: a useful gene for phylogenetic analysis in diatoms. The Journal of Eukaryotic Microbiology 50(6), 471-475.CrossRefPubMedGoogle Scholar
  19. Frankel, J. (1989). Pattern Formation, Ciliate Studies and Models, Oxford University Press, New York.Google Scholar
  20. Frigeri, L.G., Radabaugh, T.R., Haynes, P.A. and Hildebrand, M. (2006). Identification of proteins from a cell wall fraction of the diatom Thalassiosira pseudonana: insights into silica structure for-mation. Molecular & Cellular Proteomics 5(1), 182-193.CrossRefGoogle Scholar
  21. Frison, E. (1954). L’évolution de la partie optique du microscope au cours du dix-neuvième siècle. Communication No. 89, Rijksmuseum voor de Geschiedenis der Natuurwetenschappen, Leiden.Google Scholar
  22. Fryxell, G.A. (ed.) (1983). Survival Strategies of the Algae, Cambridge University Press, New York.Google Scholar
  23. Fryxell, G.A. and Hasle, G.R. (1977). The genus Thalassiosira: some species with a modified ring of central strutted processes. Nova Hedwigia 54(Suppl.), 67-98.Google Scholar
  24. Gordon, R. (1987). A retaliatory role for algal projectiles, with implications for the mechanochemistry of diatom gliding motility. Journal of Theoretical Biology 126, 419-436.CrossRefGoogle Scholar
  25. Gordon, R. (1996). Computer controlled evolution of diatoms: design for a compustat. Nova Hedwigia 112 (Festschrift for Prof. T.V. Desikachary), 213-216.Google Scholar
  26. Gordon, R., Björklund, N.K., Robinson, G.G.C. and Kling, H.J. (1996). Sheared drops and pennate diatoms. Nova Hedwigia 112 (Festschrift for Prof. T.V. Desikachary), 287-297.Google Scholar
  27. Gordon, R. and Brodland, G.W. (1990). On square holes in pennate diatoms. Diatom Research 5(2), 409-413.Google Scholar
  28. Gordon, R. and Drum, R.W. (1970). A capillarity mechanism for diatom gliding locomotion. Proceedings of the National Academy of Sciences of the United States of America 67, 338-344.CrossRefPubMedGoogle Scholar
  29. Gordon, R. and Drum, R.W. (1994). The chemical basis for diatom morphogenesis. International Review of Cytology 150, 243-372, 421-422.CrossRefGoogle Scholar
  30. Gordon, R., Sterrenburg, F.A.S. and Sandhage, K. (2005). A Special Issue on Diatom Nanotechnology. Journal of Nanoscience and Nanotechnology 5(1), 1-4.CrossRefGoogle Scholar
  31. Grimes, G.W. and Aufderheide, K.J. (1991). Cellular Aspects of Pattern Formation: The Problem of Assembly, Karger, Basel.Google Scholar
  32. Haeckel, E.(1904). Kunstformen der Natur[Art Forms of Nature][German], Verlag des Bibliographischen Instituts, Leipzig.Google Scholar
  33. Hamm, C.E., Merkel, R., Springer, O., Jurkojc, P., Maier, C., Prechtel, K. and Smetacek, V. (2003). Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421(6925), 841-843.CrossRefPubMedGoogle Scholar
  34. Hamm, C.E. (2005). The evolution of advanced mechanical defenses and potential technological applications of diatom shells. Journal of Nanoscience and Nanotechnology 5(1), 108-119.CrossRefPubMedGoogle Scholar
  35. Harwood, D.M. and Nikolaev, V.A. (1995). Cretaceous diatoms; morphology, taxonomy, biostratig-raphy. In: C.D. Blome et al. (convenors), Siliceous microfossils, Paleontological Society Short Courses in Paleontology, 8. The Paleontological Society, UTK Publications.Google Scholar
  36. Hasle, G.R. and Syvertsen, E.E. (1997). Marine diatoms. In: C.R. Tomas, Identifying Marine Phytoplankton, Academic Press, San Diego, pp. 5-385.Google Scholar
  37. Hendey, N.I. (1937). The plankton diatoms of the southern seas. ‘Discovery’ Reports, 16, 151-364.Google Scholar
  38. Hoover, R.B., Hoyle, F., Wickramasinghe, N.C., Hoover, M.J. and Al-Mufti, S. (1986). Diatoms on earth, comets, Europa and in interstellar space. Earth, Moon, and Planets 35(1), 19-45.CrossRefGoogle Scholar
  39. Hustedt, F. (1937). Systematische und ökologische Untersuchungen über die Diatomeen-Flora von Java, Bali und Sumatra nach dem Material der Deutschen Limnologischen Sunda-Expedition. Archiv für Hydrobiologie 15(Suppl.), 131-506.Google Scholar
  40. Janech, M.G., Krell, A., Mock, T., Kang, J.-S. and Raymond, J.A. (2006). Ice-binding proteins from sea ice diatoms (Bacillariophyceae). Journal of Phycology 42, 410.CrossRefGoogle Scholar
  41. Karcher, H. and Polthier, K. (2006). Touching Soap Films: An Introduction to Minimal Surfaces,
  42. Kilroy, C. (2004). A new alien diatom, Didymosphenia geminata (Lyngbye) Schmidt: its biology, dis-tribution, effects and potential risks for New Zealand fresh waters. NIWA Client Report: CHC2004-128, November 2004,, National Institute of Water & Atmospheric Research Ltd, Christchurch, New Zealand.
  43. Krammer, K. and Lange-Bertalot, H. (1986). Bacillariophyceae, 1 Teil: Naviculaceae, Stuttgart, New York.Google Scholar
  44. Krasske, K. (1938). Beiträge zur Kenntnis der Diatomeen-Vegetation von Island und Spitzbergen. Archives of Hydrobiology 33, 503-533.Google Scholar
  45. Lange, C.B. and Tiffany, M.A. (2002). The diatomflora of the Salton Sea, California. Hydrobiologia 473(1-3), 179-201.CrossRefGoogle Scholar
  46. Libbrecht, K. and Rasmussen, P. (2003). The Snowflake, Winter’s Secret Beauty, Voyageur Press, Stillwater, MN.Google Scholar
  47. Medlin, L.K., Kooistra W.H.C.F., Potter, D., Saunders, G.W. and Andersen, R.A. (1997). Phylogenetic relationships of the ‘golden algae’ (haptophytes, heterokont chromophytes) and their plastids. Plant Systematics and Evolution 11(Suppl.), 187-219.Google Scholar
  48. Metzeltin, D. and Lange-Bertalot, H. (1998). Tropical Diatoms of South America I: About 700 pre-dominantly rarely known or new taxa representative of the neotropical flora/Tropische Diatomeen in Südamerika I: 700 überwiegend wenig bekannte oder neue Taxa repräsentativ als Elemente der neotropischen Flora. Iconographia Diatomologica 5, 1-695.Google Scholar
  49. Moser, G., Lange-Bertalot, H. and Metzeltin, D. (1998). Insel der Endemiten. Geobotanisches Phänomen Neukaledonien [Island of Endemics. New Caledonia - a botanical phenomenon]. Bibliotheca Diatomologica 38, 1-464.Google Scholar
  50. Murphy, A.M. and Cowles, T.J. (1997). Effects of darkness on multi-excitation in vivo fluorescence and survival in a marine diatom. Limnology and Oceanography 42(6), 1444-1453.CrossRefGoogle Scholar
  51. Okita, T.W. and Volcani, B.E. (1978). Role of silicon in diatom metabolism. IX. Differential synthe-sis of DNA polymerases and DNA-binding proteins during silicate starvation and recovery in Cylindrotheca fusiformis. Biochimica et Biophysica Acta 519(1), 76-86.Google Scholar
  52. Oku, O. and Kamatani, A. (1995). Resting spore formation and phosphorus composition of the marine diatom Chaetoceros pseudocurvisetus under various nutrient conditions. Marine Biology 123(2), 393.CrossRefGoogle Scholar
  53. Ordonez, J.C., Bejan, A. and Cherry, R.S. (2003). Designed porous media: Optimally nonuniform flow structures connecting one point with more points. International Journal of Thermal Sciences 42(9), 857-870.CrossRefGoogle Scholar
  54. Owen, R.B., Renaut, R.W., Hover, V.C., Ashley, G.M. and Muasya, A.M. (2004). Swamps, springs and diatoms: wetlands of the semi-arid Bogoria-Baringo Rift, Kenya. Hydrobiologia 518, 59-78.CrossRefGoogle Scholar
  55. Pappas, J.L. (2005a). Geometry and topology of diatom shape and surface morphogenesis for use in applications of nanotechnology. Journal of Nanoscience and Nanotechnology 5(1), 120-130.CrossRefPubMedGoogle Scholar
  56. Pappas, J.L. (2005b). The theoretical morphospace and its relation to freshwater Gomphonemoid-Cymbelloid diatom (Bacillariophyta) lineages. Journal of Biological Systems 13(4), 385-398.CrossRefGoogle Scholar
  57. Parkinson, J., Brechet, Y. and Gordon, R. (1999). Centric diatom morphogenesis: a model based on a DLA algorithm investigating the potential role of microtubules. Biochimica et Biophysica Acta - Molecular Cell Research 1452(1), 89-102.CrossRefGoogle Scholar
  58. Pickett-Heaps, J.D., Schmid, A.M.M. and Edgar,L.A. (1990). The cell biology of diatom valve formation. Progress in Phycological Research 7,1-168.Google Scholar
  59. Poulin, M. and Cardinal, A. (1982a). Sea ice diatoms from Manitounuk Sound, Southeastern Hudson Bay (Québec, Canada). I. Family Naviculaceae. Canadian Journal of Botany 60, 1263-1278.Google Scholar
  60. Poulin, M. and Cardinal, A. (1982b). Sea ice diatoms from Manitounuk Sound, Southeastern Hudson Bay (Québec, Canada). II. Naviculacea, genus Navicula. Canadian Journal of Botany 60, 2825-2845.CrossRefGoogle Scholar
  61. Round, F.E., Crawford, R.M. and Mann, D.G. (1990). The Diatoms, Biology & Morphology of the Genera, Cambridge University Press, Cambridge.Google Scholar
  62. Schmid, A.M.M. (1984). Schalenmorphogenese in Diatomeen/Valve morphogenesis in diatoms. In: K. Bach and B. Burkhardt (eds.), Diatomeen I, Schalen in Natur und Technik/Diatoms I, Shells in Nature and Technics, Cramer Verlag, Stuttgart, pp. 300-317.Google Scholar
  63. Schmid, A.M.M. (1994). Aspects of morphogenesis and function of diatom cell walls with implica-tions for taxonomy. Protoplasma 181(1-4), 43-60.CrossRefGoogle Scholar
  64. Schmid, A.M.M., Eberwein, R.K. and Hesse, M. (1996). Pattern morphogenesis in cell walls of diatoms and pollen grains: a comparison. Protoplasma 193, 144-173.CrossRefGoogle Scholar
  65. Schmidt, A. (1874-1959). Atlas der DiatomaceenKunde, 2nd reprint 1984 ed., Koeltz Scientific Books, Koenigstein, Germany.Google Scholar
  66. Schultze, M.J.S. (1863a). The structure of diatom shells, compared with certain siliceous pellicles arti-ficially prepared from fluoride of silicium/Die Structur der Diatomeenschale, verglichen mit gewissen aus Fluorkiesel kuenstlich darstellbaren Kieselhauten. Naturhistorischer Verein der Rheinlande und Westfalens Verhandlungen 20, 1-42.Google Scholar
  67. Schultze, M.J.S. (1863b). On the structure of the valve in the Diatomacea, as compared with certain siliceous pellicles produced artificially by the decomposition in moist air of fluo-silicic acid gas (fluoride of silicium). Quarterly Journal Microscop. Science new series 3, 120-134.Google Scholar
  68. Singler, H.R. and Villareal, T.A. (2005). Nitrogen inputs into the euphotic zone by vertically migrating Rhizosolenia mats. Journal of Plankton Research 27(6), 545-556.CrossRefGoogle Scholar
  69. Spaulding, S. (2006). U.S. Environmental Protection Agency Region 8 - Aquatic Nuisance Species, Didymosphenia geminata,
  70. Spitz, W.U., Schmidt, H., Fett, W. and Petersohn, F. (1965). Bemerkung and Richtigstellung zu der Arbeit: Untersuchungen von Luftfiltrationsstreifen aus verschiedenen Gebieten der Bundesrepublik auf ihren Diatomeengehalt. Werner U. Spitz, Hannelore Schmidt und Walter Fett, diese Zeitschrift 56, 116 (1965) [Remark to and correction of the article: Investigations of air filtration stripes from various regions of the Federal Republic concerning their Diatomaceae content by Werner U. Spitz, Hannelore Schmidt and Walter Fett in this Journal 56, 116 (1965)]. Dtsch. Z. Gesamte Gerichtl. Med. 56(6), 433-434.Google Scholar
  71. Sterrenburg, F.A.S. (1973). Extreme malformation and the notion of species. Microscopy 32, 314-318.Google Scholar
  72. Sterrenburg, F.A.S. (1989). Studies on tube-dwelling Gyrosigma populations. Diatom Research 4(1), 143-151.Google Scholar
  73. Sterrenburg, F.A.S. (1994). Studies on the genera Gyrosigma and Pleurosigma (Bacillariophyceae). The species of Sullivant & Wormley 1859, synonymy and differentiation from other Gyrosigma taxa. Proceedings Academy of Natural Sciences of Philadelphia, 145, 217-236.Google Scholar
  74. Sterrenburg, F.A.S. (2005). Taxonomy and ecology: an inseparable pair. Proceedings of the California Academy of Sciences, 56, 14, 156-161.Google Scholar
  75. Sterrenburg, F.A.S., Tiffany, M.A. and Lange, C.B. (2000). Studies on the genera Gyrosigma and Pleurosigma (Bacillariophyceae) - Species from the Salton Sea, California, USA, including Pleurosigma ambrosianum, nov sp. Proceedings of the Academy of Natural Sciences of Philadelphia 150, 305-313.Google Scholar
  76. Stoermer, E.F. and Smol, J.P. (eds.) (1999). The Diatoms. Applications for the Environmental and Earth Sciences, Cambridge University Press, Cambridge.Google Scholar
  77. Tiffany, M.A., González, M.R., Swan, B.K., Reifel, K.M., Watts, J.M. and Hurlbert, S.H. (2007). Phytoplankton dynamics in the Salton Sea, California, 1997-1999. Hydrobiologia submitted.Google Scholar
  78. Ussing, A.P., Gordon, R., Ector, L., Buczkó, K., Desnitski, A. and VanLandingham, S.L. (2005). The colonial diatom “Bacillaria paradoxa”: chaotic gliding motility, Lindenmeyer model of colonial morphogenesis, and bibliography, with translation of O.F. Müller (1783), “About a peculiar being in the beach-water”. Diatom Monographs 5, 1-140.Google Scholar
  79. Van der Werff, A. (1941). Wetenschappelijke resultaten der studiereis van Prof. Dr. Van Oye op IJsland. [Scientific Results of Prof. Dr. van Oye’s Expedition in Iceland.] XI. Bacillariales. Biologisch Jaarboek uitgegeven door het Koninklijk Natuurwetenschappelijk Genootschap Dodonea, Antwerp.Google Scholar
  80. Vrieling, E.G., Gieskes, W.W.C. and Beelen, T.P.M. (1999). Silicon deposition in diatoms: control by the pH inside the silicon deposition vesicle. Journal of Phycology 35(3), 548-559.CrossRefGoogle Scholar
  81. Vrieling, E.G., Sun, Q., Tian, M., Kooyman, P.J., Gieskes, W.W., van Santen, R.A. and Sommerdijk, N.A. (2007). Salinity-dependent diatom biosilicification implies an important role of external ionic strength. Proceedings of the National Academy of Sciences of the United States of America 104(25), 10441-10446.CrossRefPubMedGoogle Scholar
  82. Werner, D. (ed.) (1977). The Biology of Diatoms, Blackwell Scientific Publications, Oxford.Google Scholar
  83. Wikipedia (2007). Constructal theory,
  84. Witkowski, A., Kowalski, W., Wawrzyniak-Wydrowska, B., Bsk, M. and Daniszewska-Kowalczyk, G. (2007). Systematic and ecological variability of phycoflora of selected microhabitats of the Western Pomerania (Poland) lakes with particular reference to desmids (Desmidiaceae) and diatoms (Bacillariophyceae) on the background of trophic parameters of the habitat [Polish]. Bibliotheca Diatomologica, in press.Google Scholar
  85. Zanon, D.V. (1930). Diatomee del permiano e delcarbonifero. Mem. Pont. Accad. Sci. (N.L. II) 14, 89-123.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Frithjof A. S. Sterrenburg
    • 1
  • Richard Gordon
    • 2
  • Mary Ann Tiffany
    • 3
  • Stephen S. Nagy
    • 4
  1. 1.The Netherlands
  2. 2.University of ManitobaCanada
  3. 3.Center for Inland WatersSan Diego State UniversitySan DiegoUSA
  4. 4.HelenaUSA

Personalised recommendations