Phylogenetics, Molecular Biology and Ecological Impacts of a Group of Highly Unusual Protists

The Dinoflagellates
  • Shauna Murray
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

Dinoflagellates are well-known and readily recognized protists, consisting of ~4,000 named extant and fossil species (Fensome et al., 1993). Dinoflagellates exhibit great diversity in many ecological parameters such as niche exploitation, and show extreme idiosyncrasy in their ultrastructural and molecular biological characteristics. The human impact of sudden dinoflagellate proliferation, in the form of harmful algal blooms (HABs), as well as the impact of the sudden loss or senescence of dinoflagellates, in the form of coral bleaching, have become an increasing focus of concern in recent years. For these reasons, studies of the molecular evolution, ecology, diversity and physiology of dinoflagellates have increased dramatically, and have revealed ever more interesting features. This review will explore the significance of recent findings in the phylogenetics, evolution, molecular biology and ecology of this intriguing group.


Coral Bleaching Harmful Algal Bloom Shellfish Poisoning Heterotrophic Dinoflagellate Diarrhetic Shellfish Poisoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bachvaroff, T. V., Concepcion, G. T., Rogers, C. R., Herman, E. M., and Delwiche, C. F. (2004). Dinoflagellate expressed sequence tag data indicates massive transfer of chloroplast genes to the nuclear genome. Protist 155: 65-78.CrossRefPubMedGoogle Scholar
  2. Banaszak, A. R., Iglesias-Prieto, R., and Trench, R. K. (1993). Scrippsiella velellae sp. nov. (Peridiniales) and Gloeodinium viscum sp. nov. (Phytodiniales), dinoflagellate symbionts of two hydrozoans (Cnidaria). J. Phycol. 29: 517-528.CrossRefGoogle Scholar
  3. Barbrook, A. C., and Howe, C. J. (2000). Minicircular plastid DNA in the dinoflagellate Amphidinium operculatum. Mol. Gen. Genet 263: 152-158.CrossRefPubMedGoogle Scholar
  4. Beam, C. A., and Himes, M. (1987). Electrophoretic characterization of members of the Crypthecodinium cohnii (Dinophyceae). J. Protozool. 34: 204-217.Google Scholar
  5. Chesnick, J. M., Kooistra, W. H., Wellbrock, U., and Medlin, L. K. (1997). Ribosomal RNA analysis indicates a benthic pinnate diatom ancestry for the endosymbionts of the dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta). J Eukaryot Microbiol. 44: 314-320.CrossRefPubMedGoogle Scholar
  6. Coats, D. W., Adam, E. J., Gallegos, C. L., and Hedrick, S. (1996). Parasitism of photosynthetic dinoflagellates in a shallow subestuary of Chesapeake Bay, U.S.A. Aquat. Microb. Ecol. 11: 1-9.CrossRefGoogle Scholar
  7. Daugbjerg, N., Hansen, G., Larsen J., and Moestrup, Ø. (2000). Phylogeny of some of the major gen-era of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39: 302-317.CrossRefGoogle Scholar
  8. Diaz de la Espina, S., Alverca, E., Cuadrado, A., and Franca, S. (2005). Organisation of the genome and gene expression in a nuclear environment lacking histones and nucleosomes: the amazing dinoflagellates. Eur. J. Cell Biol. 84: 137-149.Google Scholar
  9. Dodge, J. D., and Gruet, C. (1987). Dinoflagellate ultrastructure and complex organelles. In F. J. R. Taylor, (ed.). The biology of dinoflagellates. Blackwell Science. Oxford.Google Scholar
  10. Drebes, G. (1984). Life cycle and host specificity of marine parasitic dinoflagellates. Helgol. Meeresunters 37: 603-622.Google Scholar
  11. Fast, N., Kissinger J. C., Roos, D. S., and Keeling, P. (2001). Nuclear-encoded, plastid targeted genes suggest a single, common origin for apicomplexan and dinoflagellate plastids. Mol. Biol. Evol. 18: 418-426.PubMedGoogle Scholar
  12. Fast, N., Xue, L., Bingham, S., and Keeling, P. (2002). Re-examining alveolate evolution using multi-ple protein molecular phylogenies. J. Eukaryot. Microbiol. 49: 30-37.CrossRefPubMedGoogle Scholar
  13. Fensome, R. A., Taylor F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., and Williams, G. L. (1993). A classification of living and fossil dinoflagellates. American Museum of Natural History. Sheridan Press, Hanover.Google Scholar
  14. Flø Jørgensen, M., Murray, S., and Daugbjerg, N. (2004a). Amphidinium revisited: I Redefinition of Amphidinium (Dinophyceae) based on cladistic and molecular phylogenetic analyses. J. Phycol. 40: 351-365.CrossRefGoogle Scholar
  15. Franks, P. J. (1997). Models of harmful algal blooms. Limnol. Oceanogr. 42: 1273-1282.Google Scholar
  16. Gaines G., and Elbrächter M. (1987). Heterotrophic nutrition. In F. J. R. Taylor, (ed.). The biology of dinoflagellates. Blackwell Scientific Publications, Oxford, pp 224-268.Google Scholar
  17. Gunderson, J. H., Elwood, H., Ingold, A., Kindle, K., and Sogin, M. (1987). Phylogenetic relation-ships between chlorophytes, chrysophytes and oomycetes. Proc. Natl. Acad. Sci. U.S.A. 84: 5823-5827.CrossRefPubMedGoogle Scholar
  18. Hackett, J. D., Anderson, D. M., Erdner, D. L., and Bhattacharya, D. (2004). Dinoflagellates: a remarkable evolutionary experiment. Am. J. Bot. 91: 1523-1534.CrossRefGoogle Scholar
  19. Hallegraeff, G. M. (1993). A review of harmfulalgal blooms and their apparent global increase. Phycologia 32: 79-99.Google Scholar
  20. Hansen, P. J. (1991). Quantitative importance and trophic role of heterotrophic dinoflagellates in a coastal pelagial food web. Mar. Ecol. Prog. Ser. 73: 253-261.CrossRefGoogle Scholar
  21. Hansen, P. J., and Calado, A. J. (1999). Phagotrophic mechanisms and prey selection in free-living dinoflagellates. J. Eukaryot. Microbiol. 46: 382-389.CrossRefGoogle Scholar
  22. Harper, J. T., and Keeling, P. J. (2003). Nucleus-encoded, plastid targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromist and alveolate plastids. Mol. Biol. Evol. 20: 1730-1735.CrossRefPubMedGoogle Scholar
  23. Hayhome, B. A., Whitten, D. J., Harkins, K. R., and Pfiester, L. A. (1987). Intraspecific variation in the dinoflagellate Peridinium volzii. J. Phycol. 23: 573-580.CrossRefGoogle Scholar
  24. Horiguchi, T., and Sukigara, C. (2005). Pyramidodinium atrofuscum gen. et sp. nov. (Dinophyceae), a new marine sand-dwelling coccoid dinoflagellate from tropical waters. Phycol. Res. 53: 247-254.CrossRefGoogle Scholar
  25. Horiguchi, T., Yoshizawa-Ebata, J., and Nakayama, T. (2000). Halostylodinium arenarium, gen. et sp. nov. (Dinophyceae), a coccoid sand-dwelling dinoflagellate from subtropical Japan. J. Phycol. 36: 960-971.CrossRefGoogle Scholar
  26. Laatsch, T., Zauner, S., Stoeber-Maier, B., Kowallik, K. V., and Maier, U. G. (2004). Plastid-derived single gene minicircles of the dinoflagellate Ceratium horridum are localised in the nucleus. Mol. Biol. Evol. 21: 1318-1322.CrossRefPubMedGoogle Scholar
  27. LaJeunesse, T. (2001). Investigating the biodiversity, ecology and phylogeny of endosymbiotic dinofla-gellates in the genus Symbiodinium using the ITS region. J. Phycol. 37: 866-880.CrossRefGoogle Scholar
  28. LaJeunesse, T. C., Lambert, G., Anderson, R. A., Coffroth, M. A., and Galbraith D. W. (2005). Symbiodinium (Pyrrhophyta) genome sizes are smallest among dinoflagellates. J. Phycol. 41: 880-886.CrossRefGoogle Scholar
  29. Leander, B. S., and Keeling, P. J. (2004). Early evolutionary history of dinoflagellates and apicom-plexans (Alveolata) inferred from HSP90 and actin phylogenies. J. Phycol. 40: 341-350.CrossRefGoogle Scholar
  30. Leaw, C. P., Lim, P. T, Ng, B. K., Cheah, M. Y., Ahmad, A., and Usup, G. (2005). Phylogenetic analy-sis of Alexandrium species and Pyrodinium bahamense (Dinophyceae) based on theca morphol-ogy and nuclear ribosomal gene sequence. Phycologia 44: 550-565.CrossRefGoogle Scholar
  31. Lehane, L. (2000). Ciguatera update. Med. J. Aust. 172: 176-179.PubMedGoogle Scholar
  32. Lenaers, G., Scholin, C., Bhaud, Y., Saint-Hilaire, D., and Herzog, M. (1991). A molecular phylogeny of dinoflagellate protists (Pyrrophyta) inferred from the sequences of 24S rRNA divergent domains D1 and D8. J. Mol. Evol. 32: 53-63.CrossRefPubMedGoogle Scholar
  33. Lewis, C. L., and Coffroth, M. J. (2004). The acquisition of exogenous algal symbionts by an octoco-ral after bleaching. Science 304: 1490-1492.CrossRefPubMedGoogle Scholar
  34. Li, L., and Hastings, J. W. (1998). The structure and organisation of the luciferase gene in the photo-synthetic dinoflagellate Gonyaulax polyedra. Plant. Mol. Biol. 36: 275-284.CrossRefPubMedGoogle Scholar
  35. Lin, S. (2006). The smallest dinoflagellate genomeis yet to be found: a comment on LaJeunesse et al. J. Phycol. 42: 746-748.CrossRefGoogle Scholar
  36. Lindberg, K., Moestrup, Ø., and Daugbjerg, N. (2005). Studies on woloszynskoid dinoflagellates I: Woloszynskia coronata re-examined using light and electron microscopy and partial LSU rDNA sequences, with a description of Tovellia gen. nov. and Jagwigia gen. nov. (Tovelliaceae fam. nov.) Phycologia 44: 416-440.CrossRefGoogle Scholar
  37. Litaker, R. W., Tester, P. A., Colorni, A., Levy, M. G., and Noga, E. J. (1999). The phylogenetic rela-tionship of Pfiesteria piscicida, cryptoperidiniopsoid sp., Amyloodinium ocellatum and a Pfiesteria-like dinoflagellate to other dinoflagellates and apicomplexans. J. Phycol. 35: 1379-1389.CrossRefGoogle Scholar
  38. López-García, P., Rodríguez-Valera, F., Pedrós-Alló, C., and Moreira, D. (2001). Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409: 603-607.CrossRefPubMedGoogle Scholar
  39. McNally, K., Govind, N. S., Thome, P. E., and Trench, R. K. (1994). Small-subunit ribosomal DNA sequence analyses and a reconstruction of the inferred phylogeny among symbiotic dinoflagel-lates (Pyrrophyta). J. Phycol. 30: 316-329.CrossRefGoogle Scholar
  40. Marshall, A. (1996). Calcification in hermatypic and ahermatypic corals. Science 271: 1788-1792.CrossRefGoogle Scholar
  41. Mitchelmore, C. L., Schwarz, J. A., and Weis, V. M. (2002). Development of symbiosis-specific genes as biomarkers for the early detection of cnidarian-algal symbiosis breakdown. Marine Environmental Research. 54: 345-349.CrossRefPubMedGoogle Scholar
  42. Moestrup, Ø., Hansen, G., Daugbjerg, N., Flaim, G., and D’Andrea, M. (2006). Studies on woloszyn-skioid dinoflagellates II: On Tovellia sanguinea sp. nov., the dinoflagellate responsible for the red-dening of Lake Tovel, N. Italy. Eur. J. Phycol. 41: 47-65.CrossRefGoogle Scholar
  43. Montresor, M., Sgrosso, S., Procaccini, G., and Kooistra, W. H. C. F. (2003). Intraspecific diversity in Scrippsiella trochoidea (Dinophyceae): evidence for cryptic species. Phycologia 42: 56-70.Google Scholar
  44. Moon van der Staay, S. Y., De Wachter, R., and Vaulot, D. (2001). Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409: 607-610.Google Scholar
  45. Murray, S., Flø Jørgensen, M., Daugbjerg, N., and Rhodes, L. (2004). Amphidinium revisited. II. Resolving species boundaries in the Amphidinium operculatum species complex (Dinophyceae), including the descriptions of Amphidinium trulla sp nov and Amphidinium gibbosum. comb. nov. J. Phycol. 40: 366-382.CrossRefGoogle Scholar
  46. Murray, S., Flø Jørgensen, M., Ho, S. Y. W., Patterson, D. J., and Jermiin, L. S. (2005). Improving the analysis of dinoflagellate phylogeny based on rDNA. Protist 156: 269-286.CrossRefPubMedGoogle Scholar
  47. Murray, S., Hoppenrath, M., Preisfeld, A., Larsen, J., Yoshimatsu, S., Toriumi, S., and Patterson, D. J. (2006). Phylogeny of Rhinodinium broomeense gen. et sp. nov., a thecate, marine sanddwelling dinoflagellate. J. Phycol. 42: 934-942.CrossRefGoogle Scholar
  48. Okamoto, O. K., Robertson, D. L., Fagan, T. F., Hastings, J. W., and Colepicolo, P. (2001). Different regulatory mechanisms modulate the expression of a dinoflagellate iron-superoxide dismutase. J. Biol. Chem. 276: 19989-19993. CrossRefPubMedGoogle Scholar
  49. Okamoto, O. K., and Hastings, J. W. (2003). Genome wide analysis of redox regulated genes in a dinoflagellate. Gene. 321: 73-81. CrossRefPubMedGoogle Scholar
  50. Patron, N. J., Waller, R. F., and Keeling, P. J. (2006). A tertiary plastid uses genes from two endosym-bionts. J. Mol. Biol. 357: 1373-1382. CrossRefPubMedGoogle Scholar
  51. Ragelis, E. P. (1984). Ciguatera seafood poisoning:overview. In E. P. Ragelis (ed.). Seafood toxins, Washington DC, USA, pp 25-36. CrossRefGoogle Scholar
  52. Rizzo, P. J. (1987). Biochemistry of the dinoflagellate nucleus. In F. J. R. Taylor, (ed.). The biology of dinoflagellates. Blackwell, Oxford, pp 143-173. Google Scholar
  53. Roberts, K. R. (1991). The flagellar apparatus and cytoskeleton of dinoflagellates: organisation and use in systematics. In D. J. Patterson and J. Larsen, (eds.). The biology of free-living heterotrophic flagellates. Clarendon Press, Oxford. Google Scholar
  54. Roberts, K. R., and Roberts, J. E. (1991). The flagellar apparatus and cytoskeleton of the dinoflagellates - a comparative analysis. Protoplasma 164: 105-122. CrossRefGoogle Scholar
  55. Rodriguez-Lanetty, M. (2003). Evolving lineages of Symbiodinium-like dinoflagellates based on ITS1 rDNA. Mol. Phylogenet. Evol. 28: 152-168. CrossRefPubMedGoogle Scholar
  56. Rowan, R. (1998). Diversity and ecology of zooxanthellae on coral reefs. J. Phycol. 34: 407-417. CrossRefGoogle Scholar
  57. Saldarriaga, J. F., McEwen, M. L., Fast, N. M., Taylor, F. J. R., and Keeling, P. J. (2003). Multiple pro-tein phylogenies show that Oxyrrhis marina and Perkinsus marinus are early branches of the dinoflagellate lineage. Int. J. Syst. Evol. Microbiol. 53: 355-365. CrossRefPubMedGoogle Scholar
  58. Saldarriaga, J. F., Taylor, F. J. R., Keeling, P. J., and Cavalier-Smith, T. (2001). Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J. Mol. Evol. 53: 204-213.CrossRefPubMedGoogle Scholar
  59. Saunders, G. W., Hill, D. R. A., Sexton, J. P., and Anderson, R. A. (1997). Small-subunit ribosomal RNA sequences from selected dinoflagellates: testing classical evolutionary hypotheses with molecular systematic methods. Plant Syst. Evol. (Suppl) 11: 237-259. Google Scholar
  60. Schnepf, E., and Elbrächter, M. (1999). Dinophyte chloroplasts and phylogeny - a review. Grana 38: 81-97. Google Scholar
  61. Scholin, C., Herzog, M., Sogin, M., and Anderson, D. M. (1994). Identification of group and strain specific genetic markers for globally distributed Alexandrium (Dinophyceae). II. Sequence analy-sis of a fragment of the LSU rRNA gene. J. Phycol. 30: 999-1011. Google Scholar
  62. Selina, M., and Hoppenrath, M. (2004). Morphology of Sinophysis minima sp. nov. and three Sinophysis species (Dinophyceae, Dinophysiales) from the Sea of Japan. Phycol. Res. 52: 149-159.CrossRefGoogle Scholar
  63. Simpson, A. G. B., and Roger, A. J. (2005). The real ‘kingdoms’ of eukaryotes. Curr. Biol. 14: 693-696.CrossRefGoogle Scholar
  64. Skovgaard, A., Massana, R., Balague, V., and Saiz, E. (2005). Phylogenetic position of the copepod-infesting parasite Syndinium turbo (Dinoflagellata, Syndinea). Protist. 156: 413-423.CrossRefPubMedGoogle Scholar
  65. Sogin, M. L. (1989). Evolution of eukaryotic microorganisms and their small-subunit ribosomal RNAs. Am. Zool. 29: 487-499. Google Scholar
  66. Takishita, K., Ishida, K. -I., and Maruyama, T. (2003). An enigmatic GAPDH gene in the symbiotic dinoflagellate genus Symbiodinium and its related species (the order Suessiales): possible lateral gene transfer between two eucaryotic algae, dinoflagellate and euglenophyte. Protist 154: 443-454.CrossRefPubMedGoogle Scholar
  67. Takishita, K., Koike, K., Maruyama, T., and Ogata, T. (2002). Molecular evidence for plastid robbery (kleptoplastidity) in Dinophysis, a dinoflagellate causing Diarrhetic Shellfish Poisoning. Protist 153: 293-302. CrossRefPubMedGoogle Scholar
  68. Tamura, M., and Horiguchi, T. (2005). Pileidinium ciceropse gen. et sp. nov. (Dinophyceae), a sand-dwelling dinoflagellate from Palau. Eur. J. Phycol. 40: 281-291. CrossRefGoogle Scholar
  69. Tamura, M., Shimada, S., and Horiguchi, T. (2005). Galeidiniium rugatum gen. et sp. nov. (Dinophyceae), a new coccoid dinoflagellate with a diatom endosymbiont. J. Phycol. 41: 658-671. CrossRefGoogle Scholar
  70. Taylor, F. J. R. (1987). Taxonomy and classification. In F. J. R. Taylor, (ed.). The biology of dinofla-gellates. Blackwell Scientific Publications, Oxford. Google Scholar
  71. Taylor, F. J. R. (1999). Charles Atwood Kofoid and his dinoflagellate tabulation system: an appraisal and evaluation of the phylogenetic value of tabulation. Protist 150: 213-220.CrossRefPubMedGoogle Scholar
  72. Trench, R. K., and Blank, R. J.. (1987). Symbiodinium microadriaticum Freudenthal, S. goreauii sp. nov., S. kawagutii sp. nov. and S. pilosum sp. nov.: Gymnodinioid dinoflagellate symbionts of marine invertebrates. J. Phycol. 23: 469-481. CrossRefGoogle Scholar
  73. Villareal, T. A. (2002). Use of cell-specific PAM-fluorometry to characterize host shading in the epi-phytic dinoflagellate Gambierdiscus toxicus. Mar Ecol-Pub Del Staz Zool Di Napoli I 23: 127-140. CrossRefGoogle Scholar
  74. Villanoy, C. L., Azanza, R. V., Alternerano, A., and Casil, A. L. (2006). Attempts to model the bloom dynamics of Pyrodinium, a tropical toxic dinoflagellate. Harmful Algae 5: 156-183.CrossRefGoogle Scholar
  75. Vogelbein, W. K., Lovko, V. J., Shields, J. D., Reece, K. S., Mason, P. L., Haas, L. W., and Walker, C. C. (2002). Pfiesteria shumwayae kills fish by micropredation not exotoxin secretion. Nature 418: 967-970. CrossRefPubMedGoogle Scholar
  76. Watanabe, M. M., Suda, S., Inouye, I., Sawaguchi, T., and Chihara, M. (1990). Lepidodinium viride gen. et sp. nov. (Gymnodiniales, Dinophyta), a green dinoflagellate with a chlorophyll a- and b-containing endosymbiont. J. Phycol. 26: 741-751. CrossRefGoogle Scholar
  77. Yamaguchi, A, and Horiguchi, T. (2005). Molecular phylogenetic study of the heterotrophic dinofla-gellate genus Protoperidinium (Dinophyceae) inferred from small subunit rRNA gene sequences. Phycol. Res. 53: 30-42. CrossRefGoogle Scholar
  78. Yamamoto, T., Hashimoto, T., Tarutani, K., and Kotani, Y. (2002). Effects of winds, tides and river water runoff on the formation and disappearance of the Alexandrium tamarense bloom in Hiroshima Bay, Japan. Harmful Algae 1: 301-312.CrossRefGoogle Scholar
  79. Yanagi, T., Yamamoto, T., Koizumi, Y., Ikeda, T., Kamizono, M., and Tamori, H. (1995). A numerical simulation of red tide formation. J. Mar. Sys. 6: 269-285. CrossRefGoogle Scholar
  80. Yoon, H. S., Hackett, J. D., and Bhattacharya, D. (2002). A single origin of the peridinin and fucoxanthin containing plastids in the dinoflagellates through tertiary endosymbiosis. Proc. Natl. Acad. Sci., U.S.A. 99: 11724-11729.Google Scholar
  81. Zhang, Z., Green, B. R, and Cavalier-Smith, T. (1999). Single gene circles in dinoflagellate chloroplast genomes. Nature 400: 155-159. CrossRefPubMedGoogle Scholar
  82. Zhang, H., Bhattacharya, D., and Lin, S. (2005). Phylogeny of dinoflagellates based on mitochondr-ial cytochrome b and nuclear small subunit rDNA sequence comparisons. J. Phycol. 41: 411-420.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Shauna Murray
    • 1
  1. 1.School of Biological Sciences AO8University of SydneyAustralia

Personalised recommendations