Skip to main content

Marine Phototrophs in the Twilight Zone

  • Chapter

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 11))

Phototrophs (photolithoautotrophs) are organisms that use light as their energy source to synthesize organic compounds. These organisms include some bacteria, cyanobacteria, algae, and plants. They harvest light by various pigments, the main of these being chlorophylls, and its energy is transferred to the photosynthetic reaction centers. Even though phototrophs depend on light for their survival, some of these grow under very low light.

In general, the terrestrial light flux, even under the most intense sunlight is too low for single chlorophyll molecules to sustain photosynthesis, since the arrival of photons would be so slow that the S states (Kok et al., 1970, Falkowski and Raven, 1997) would decay spontaneously, not allowing generation of oxygen or carbon reduction. In reality, light is harvested in the photosynthetic apparatus by “antennae,” consisting of hundreds of pigment molecules embedded in the thylakoids or similar membranes. The antennae have a far larger cross section,σ, or probability of intercepting a photon than single pigment molecules. The energy intercepted by the antennae migrates as excitation energy to the few chlorophyll molecules in the photosynthetic reaction centers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Airs, R. L., Borrego, C. M., Garcia-Gil, J., and Keely, B. J. (2001) Identification of the bacteri- ochlorophyll homologues of Chlorobium phaeobacteroides strain UdG6053 grown at low light intensity. Photosynth. Res. 70, 221-230.

    Article  CAS  PubMed  Google Scholar 

  • Aponte, N. E., and Ballantine, D. L. (2001) Depth distribution of algal species on the deep insular fore reef at Lee Stocking Island, Bahamas. Deep Sea Res. Part I Oceanogr. Res. Pap. 48, 2185-2194.

    Article  Google Scholar 

  • Baldisserotto, C., Ferroni, L., Andreoli, C., Fasulo, M. P., Bonora, A., and Pancaldi, S. (2005) Dark-acclimation of the chloroplast in Koliella antarctica exposed to a simulated austral night condition. Arct. Antarct. Alp. Res. 37, 146-156.

    Article  Google Scholar 

  • Bassham, J. A., Krohne, S., and Lendzian, K. (1978) In vivo control mechanism of the carboxylation reaction, In: H.W. Siegelman and G. Hind, (eds.) Photosynthesis Carbon Assimilation Plenum Press, New York, pp. 77-93.

    Google Scholar 

  • Beatty, J. T., Overmann, J., Lince, M. T., Manske, A. K., Lang, A. S., Blankenship, R. E., Van Dover, C. L., Martinson, T. A., and Plumley, F. G. (2005) An obligately photosynthetic bacterial anaer-obe from a deep-sea hydrothermal vent. Proc. Natl. Acad. Sci. U.S.A. 102, 9306-9310.

    Article  CAS  PubMed  Google Scholar 

  • Beer, S., and Ilan, M. (1998) In situ measurements of photosynthetic irradiance responses of two Red Sea sponges growing under dim light conditions. Mar. Biol. 131, 613-617.

    Article  Google Scholar 

  • Berner, T., and Evenari, M. (1978) Ecophysiological activity of hypolithic desert algae. J. Phycol. 14, 39.

    Google Scholar 

  • Berner, T., Wishkovsky, A., and Dubinsky, Z. (1986a) Endozoic algae in shelled gastropods - a new symbiotic association in coral reefs. 1. Photosynthetically active zooxanthellae in Strombus tricornis. Coral Reefs 5, 103-106.

    Article  Google Scholar 

  • Berner, T., Wishkovsky, A., and Dubinsky, Z. (1986b) Endozoic algae in shelled gastropods - a new symbiotic association in coral reefs. 2. Survey of distribution of endozoic algae in red-sea snails. Coral Reefs 5, 107-109.

    Article  Google Scholar 

  • Berner, T., Wyman, K., Dubinsky, Z., and Falkowski, P. G. (1989) Photoadaptation and the “pack-age” effect in Dunaliella tertiolecta (Chlorophyceae). J. Phycol. 25, 70-78.

    Article  CAS  Google Scholar 

  • Bibby, T. S., Nield, J., Partensky, F., and Barber, J. (2001) Oxyphotobacteria. Antenna ring around photosystem I. Nature 413, 590.

    Article  CAS  PubMed  Google Scholar 

  • Blankenship, R. E., Miller, M., and Olson, J. M. (1995) Antenna complexes from green photosyn-thetic bacteria, In: R.E. Blankenship, M.T. Madigan, and C.E. Bauer, (eds.) Anoxygenic Photosynthetic Bacteria Kluwer Academic Publishing, Dordrecht, pp. 399-435.

    Google Scholar 

  • Bohannon, J. (2005) Marine biology. Microbe may push photosynthesis into deep water. Science 308, 1855.

    Article  CAS  PubMed  Google Scholar 

  • Brandt, J. (1883) Uber die morphologische und physiologische Bedeutung des Chlorophylls bei Tieren. Zool. Stn. Neapol. 4, 191-302.

    Google Scholar 

  • Chen, M., Telfer, A., Lin, S., Pascal, A., Larkum, A. W. D., Barber, J., and Blankenship, R. E. (2005) The nature of the photosystem II reaction centre in the chlorophyll d-containing prokaryote, Acaryochloris marina. Photochem. Photobiol. Sci. 4, 1060-1064.

    Article  CAS  PubMed  Google Scholar 

  • Chisholm, J. R. M. (2003) Primary productivityof reef-building crustose coralline algae. Limnol. Oceanogr. 48, 1376-1387.

    Article  Google Scholar 

  • Chisholm, S. W. (1992) Phytoplankton size, In: P.G. Falkowski and A.D. Woodhead, (eds.) Primary Productivity and Biogeochemical Cycles in the Sea, Plenum Press, New York, pp. 213-237.

    Google Scholar 

  • Cole, K. M., and Sheath, R. G. (1990) Biology of Red Algae, Cambridge University Press, New York.

    Google Scholar 

  • Doty, M. S., Gilbert, W. J., and Abbott, I. A. (1974) Hawaiian marine algae from seaward of the algal ridge. Phycologia 13, 345-357.

    Google Scholar 

  • Dubinsky, Z. (1992) The functional and optical absorption cross-sections of phytoplankton photo-synthesis, In: P.G. Falkowski and A.D. Woodhead, (eds.) Primary Productivity and Biogeochemical Cycles in the Sea Plenum Press, New York, pp. 31-45.

    Google Scholar 

  • Dubinsky, Z., Falkowski, P. G., and Wyman, K. (1986) Light harvesting and utilization in phyto-plankton. Plant Cell Physiol. 27, 1335-1349.

    CAS  Google Scholar 

  • Dufresne, A., Salanoubat, M., Partensky, F., Artiguenave, F., Axmann, I. M., Barbe, V., Duprat, S., Galperin, M. Y., Koonin, E. V., Le Gall, F., Makarova, K. S., Ostrowski, M., Oztas, S., Robert, C., Rogozin, I. B., Scanlan, D. J., de Marsac, N. T., Weissenbach, J., Wincker, P., Wolf, Y. I., and Hess, W. R. (2003) Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc. Natl. Acad. Sci. U.S.A. 100, 10020-10025.

    Article  CAS  PubMed  Google Scholar 

  • Estrada, M., Marrase, C., Latasa, M., Berdalet, E., Delgado, M., and Riera, T. (1993) Variability of deep chlorophyll maximum characteristics in the Northwestern Mediterranean. Mar. Ecol. Prog. Ser. 92, 289-300.

    Article  Google Scholar 

  • Falkowski, P. G., and Owens, T. G. (1978) Effects of light intensity on photosynthesis and dark respi-ration in six species of marine phytoplankton. Mar. Biol. 45, 289-295.

    Article  CAS  Google Scholar 

  • Falkowski, P. G., and Raven, J. A. (1997) Aquatic Photosynthesis, Blackwell Science, Massachusetts.

    Google Scholar 

  • Fork, D. C., and Larkum, A. W. D. (1989) Light harvesting in the green-alga Ostreobium sp, a coral symbiont adapted to extreme shade. Mar. Biol. 103, 381-385.

    Article  Google Scholar 

  • Gorbunov, M. Y., and Falkowski, P. G. (2002) Photoreceptors in the cnidarian hosts allow symbiotic corals to sense blue moonlight. Limnol. Oceanogr. 47, 309-315.

    Article  Google Scholar 

  • Grzymski, J., Schofield, O. M., Falkowski, P. G., and Bernhard, J. M. (2002) The function of plastids in the deep-sea benthic foraminifer, Nonionella stella. Limnol. Oceanogr. 47, 1569-1580.

    Article  CAS  Google Scholar 

  • Halldal, P. (1968) Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral Favia. Bull. Mar. Biol. Lab. 134, 411-424.

    Article  CAS  Google Scholar 

  • Holzwarth, A. R., Griebenow, K., and Schaffner, K. (1992) Chlorosomes, photosynthetic antennae with novel self-organized pigment structures.J. Photochem. Photobiol. A Chem. 65, 61-71.

    Article  CAS  Google Scholar 

  • Jeffrey, S. W. (1968) Pigment composition of siphonales algae in brain coral Favia. Biol. Bull. 135, 141-148.

    Article  CAS  Google Scholar 

  • Jeffrey, S. W., Mantoura, R. F. C., and Wright, S. W. (1997) Phytoplankton Pigments in Oceanography, UNESCO Publishing, Paris.

    Google Scholar 

  • Jerlov, N. G. (1976) Elsevier Oceanography Series, 14. Marine Optics, 231 pp, Elsevier Scientific Publishers, Amsterdam, Oxford, New York.

    Google Scholar 

  • Jochem, F. J. (1999) Dark survival strategies in marine phytoplankton assessed by cytometric meas-urement of metabolic activity with fluorescein diacetate. Mar. Biol. 135, 721-728.

    Article  CAS  Google Scholar 

  • Kanwishe, J. W., and Wainwrig, S. A. (1967) Oxygen balance in some reef corals. Biol. Bull. 133, 378-390.

    Article  Google Scholar 

  • Kiefer, D. A., Olson, R. J., and Holmhansen, O. (1976) Another look at nitrite and chlorophyll max-ima in central North Pacific. Deep-Sea Res. 23, 1199-1208.

    CAS  Google Scholar 

  • Kirk, J. T. O. (1986) Optical properties of picoplankton suspensions, In: T. Platt and W.K.W. Li, (eds.) Photosynthetic Picoplankton Canada Bulletin Fish. Aquatic Science 214: pp. 501-520.

    Google Scholar 

  • Kirk, J. T. O. (1994) Light and Photosynthesis in Aquatic Ecosystems, 2nd ed., 509 pp, Cambridge University Press, London, New York.

    Google Scholar 

  • Kok, B., Forbush, B., and MCGLOIN, M. (1970) Cooperation of charges in photosynthetic O2 evo-lution. 1. A linear 4-step mechanism. Photochem. Photobiol. 11, 453-475.

    Article  Google Scholar 

  • Kuhl, M., Chen, M., Ralph, P. J., Schreiber, U., and Larkum, A. W. D. (2005) A niche for cyanobac-teria containing chlorophyll d. Nature 433, 820.

    Article  PubMed  CAS  Google Scholar 

  • Lang, J. C. (1974) Biological zonation at base of areef. Am. Sci. 62, 272-281.

    Google Scholar 

  • Larkum, A. W. D., and Kuhl, M. (2005) Chlorophylld: the puzzle resolved. Trends Plant Sci. 10, 355-357.

    Article  CAS  PubMed  Google Scholar 

  • Lewin, R. A., and Withers, N. W. (1975) Extraordinary pigment composition of a prokaryotic alga. Nature 256, 735-737.

    Article  CAS  Google Scholar 

  • Littler, M. M., Littler, D. S., Blair, S. M., and NORRIS, J. N. (1985) Deepest known plant life dis-covered on an uncharted seamount. Science 227, 57-59.

    Article  PubMed  CAS  Google Scholar 

  • Littler, M. M., Littler, D. S., Blair, S. M., and NORRIS, J. N. (1986) Deep-water plant-communities from an uncharted seamount off San Salvador Island, Bahamas - distribution, abundance, and primary productivity. Deep-Sea Res. Part A-Oceanogr. Res. Pap. 33, 881-892.

    Article  CAS  Google Scholar 

  • Marquardt, J., Senger, H., Miyashita, H., Miyachi, S., and Morschel, E. (1997) Isolation and charac-terization of biliprotein aggregates from Acaryochloris marina, a Prochloron-like prokaryote con-taining mainly chlorophyll d. FEBS Lett. 410, 428-432.

    Article  CAS  PubMed  Google Scholar 

  • Marris, E. (2005) The life aquatic. Nature 436, 908-909.

    Article  CAS  PubMed  Google Scholar 

  • Morel, A., and Prieur, L. (1977) Analysis of variations in ocean color. Limnol. Oceanogr. 22, 709-722.

    Google Scholar 

  • Morel, A., Ahn, Y.-W., Partensky, F., Vaulot, D., and Claustre, H. (1993) Prochlorococcus and Synechococcus: a comparative study of their size, pigmentation and related optical properties. J. Mar. Res. 51, 617-649.

    Article  CAS  Google Scholar 

  • Murphy, A. M., and Cowles, T. J. (1997) Effects of darkness on multi-excitation in vivo fluorescence and survival in a marine diatom. Limnol. Oceanogr. 42, 1444-1453.

    CAS  Google Scholar 

  • Muscatine, L. (1990) The role of symbiotic algal in carbon and energy flux in reef corals, In: Z. Dubinsky, (ed.) Coral Reefs Elsevier, Amsterdam, pp. 75-87.

    Google Scholar 

  • Odum, H. T., and Odum, E. P. (1955) Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol. Monogr. 25, 291-320.

    Article  Google Scholar 

  • Olson, J. M. (1998) Chlorophyll organizationand function in green photosynthetic bacteria. Photochem. Photobiol. 67, 61-75.

    Article  CAS  Google Scholar 

  • Overmann, J., and Garcia-Pichel, F. (2005) The phototrophic way of life, In: M. Dworkin, (ed.) The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, Springer, New York.

    Google Scholar 

  • Overmann, J., Beatty, J. T., HALL, K. J., Pfennig, N., and Northcote, T. G. (1991) Characterization of a dense, purple sulfur bacterial layer in a meromictic salt lake. Limnol. Oceanogr. 36, 846-859.

    Article  CAS  Google Scholar 

  • Owrid, G., Socal, G., Civitarese, G., Luchetta, A., Wiktor, J., Nothig, E. M., Andreassen, I., Schauer, U., and Strass, V. (2000) Spatial variability of phytoplankton, nutrients and new production esti-mates in the waters around Svalbard. Polar Res. 19, 155-171.

    Article  Google Scholar 

  • Partensky, F., Hess, W. R., and Vaulot, D. (1999) Prochlorococcus, a marine photosynthetic prokary-ote of global significance. Microbiol Mol Biol Rev. 63, 106-127.

    CAS  PubMed  Google Scholar 

  • Porter, J., Muscatine, L., Dubinsky, Z., and Falkowski, P. G. (1984) Reef coral energetics: primary pro-duction and photoadaptation. Proc. R. Soc. Lond. 222B, 161-180.

    Article  Google Scholar 

  • Reynolds, G. T., and Lutz, R. A. (2001) Sources of light in the deep ocean. Rev Geophys. 39, 123-136.

    Article  Google Scholar 

  • Rink, S., Kuhl, M., Bijma, J., and Spero, H. J. (1998) Microsensor studies of photosynthesis and res-piration in the symbiotic foraminifer Orbulina universa. Mar. Biol. 131, 583-595.

    Article  Google Scholar 

  • Roberts, R. D., Kuhl, M., Glud, R. N., and Rysgaard, S. (2002) Primary production of crustose coralline red algae in a high Arctic fjord. J. Phycol. 38, 273-283.

    Article  Google Scholar 

  • Samsonoff, W. A., and MacColl, R. (2001) Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat. Arch. Microbiol. 176, 400-405.

    Article  CAS  PubMed  Google Scholar 

  • Schlichter, D., and Fricke, H. W. (1991) Mechanisms of amplification of photosynthetically active radiation in the symbiotic deep-water coral Leptoseris fragili. Hydrobiologia 216, 389-394.

    Article  Google Scholar 

  • Schonberg, C. H. L., de Beer, D., and Lawton, A. (2005) Oxygen microsensor studies on zooxanthel-late clionaid sponges from the Costa Brava, Mediterranean Sea. J. Phycol. 41, 774-779.

    Article  Google Scholar 

  • Schumacher, H., and Zibrowius, H. (1985) What is hermatypic? A redefinition of ecological groups in corals and other organisms. Coral Reefs 4, 1-9.

    Article  Google Scholar 

  • Schwarz, A. M., Hawes, I., Andrew, N., Mercer, S., Cummings, V., and Thrush, S. (2005) Primary pro-duction potential of non-geniculate coralline algae at Cape Evans, Ross Sea, Antarctica. Mar. Ecol. Prog. Ser. 294, 131-140.

    Article  CAS  Google Scholar 

  • Shashar, N., and Stambler, N. (1992) Endolithic algae within corals - life in an extreme environment. J. Exp. Mar. Biol. Ecol. 163, 277-286.

    Article  CAS  Google Scholar 

  • Shibata, K., and Haxo, F. T. (1969) Light transmission and spectral distribution through epi- and endozoic algal layers in the brain coral Favia. Biol. Bull. 136, 461-468.

    Article  CAS  Google Scholar 

  • Soohoo, J. B., Palmisano, A. C., Kottmeier, S. T., Lizotte, M. P., Soohoo, S. L., and Sullivan, C. W. (1987) Spectral light-absorption and quantum yield of photosynthesis in sea ice microalgae and a bloom of Phaeocystis pouchetii from Mcmurdo Sound, Antarctica. Mar. Ecol. Prog. Ser. 39, 175-189.

    Article  Google Scholar 

  • Stambler, N. (2006) Light and picophytoplankton in the Gulf of Eilat (Aqaba). Journal of Geophysical Research - Oceans, 111, C11009, doi:10.1029/2005JC003373.

    Article  Google Scholar 

  • Steglich, C., Frankenberg-Dinkel, N., Penno, S., and Hess, W. R. (2005) A green light-absorbing phy-coerythrin is present in the high-light-adapted marine cyanobacterium Prochlorococcus sp MED4. Environ. Microbiol. 7, 1611-1618.

    Article  CAS  PubMed  Google Scholar 

  • Steglich, C., Mullineaux, C. W., Teuchner, K., Hess, W. R., and Lokstein, H. (2003) Photophysical properties of Prochlorococcus marinus SS120 divinyl chlorophylls and phycoerythrin in vitro and in vivo. FEBS Lett. 553, 79-84.

    Article  CAS  PubMed  Google Scholar 

  • Steindler, L., Beer, S., and Ilan, M. (2002) Photosymbiosis in intertidal and subtidal tropical sponges. Symbiosis 33, 263-273.

    Google Scholar 

  • Tilzer, M. M., and Dubinsky, Z. (1987) Effects of temperature and day length on the mass balance of Antarctic phytoplankton. Polar Biol. 7, 35-42.

    Article  Google Scholar 

  • Van Dover, C. L. (2000) The Ecology of Deep-Sea Hydrothermal Vents, Princeton University Press, UK.

    Google Scholar 

  • VanDover, C. L., Reynolds, G. T., Chave, A. D., and Tyson, J. A. (1996) Light at deep-sea hydrother-mal vents. Geophys. Res. Lett. 23, 2049-2052.

    Article  Google Scholar 

  • White, S. N., Chave, A. D., Reynolds, G. T., and Van Dover, C. L. (2002) Ambient light emission from hydrothermal vents on the Mid-Atlantic Ridge. Geophys. Res. Lett. 29,

    Google Scholar 

  • Yurkov, V. V., and Beatty, J. T. (1998) Aerobic anoxygenic phototrophic bacteria. Microbiol. Mol. Biol. Rev. 62, 695-724.

    CAS  PubMed  Google Scholar 

  • Zhang, Q., Gradinger, R., and Zhou, Q. S. (2003) Competition within the marine microalgae over the polar dark period in the Greenland Sea of high Arctic. Acta Oceanol. Sin. 22, 233-242.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Stambler, N., Dubinsky, Z. (2007). Marine Phototrophs in the Twilight Zone. In: Seckbach, J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6112-7_5

Download citation

Publish with us

Policies and ethics