Fungal Associations at the Cold Edge of Life

  • Silvano Onofri
  • Laura Zucconi
  • Laura Selbmann
  • Sybren de Hoog
  • Dra Asunción de los Ríos
  • Serena Ruisi
  • Martin Grube
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

Antarctica is the coldest, driest, and most isolated continent of our planet. The White Continent can be subdivided in several climatic zones (roughly sub- Antarctic, maritime Antarctic, and continental Antarctic) in which the possibility for life settlement strictly depends on the environmental conditions which gradually become harsher moving from maritime to continental Antarctica and, within the continental Antarctica, moving from the coast to the interior of the continent (Øvstedal and Lewis Smith, 2001). With only two phanerogams occurring at the edges of the continent, Antarctic terrestrial habitats are entirely dominated by lower organisms, including invertebrates, bryophytes, fungi, algae, and diverse prokaryotes. In continental Antarctica no vascular plants are present; the life of terrestrial ecosystems concentrates in the ice-free sites along the coastal areas where lichens, fungi, mosses, and algae grow abundantly; their occurrence decreases towards inland stations where isolated rocks occasionally present epilithic microorganisms, depending on the climate and the rock surface exposition and slope. In the ice-free areas of the McMurdo Dry Valleys (Southern Victoria Land), conditions become even more hostile. There, lichens occasionally colonize sheltered rock surfaces and life mostly withdraws inside porous rocks where milder nanoclimatic conditions are present. These life-forms, named cryptoendolithic, represent the predominant form of colonization of the Antarctic deserts (Friedmann and Ocampo, 1976; Friedmann, 1982; Wierzchos and Ascaso, 2002). The fissures and cracks of granitic rocks from this area are also colonized, by chasmoendolithic organisms (De los Ríos et al., 2004, 2005a, 2007). In these habitats, microbial life apparently meets in rather narrow niches and forms simple or more complex communities.


Extracellular Polymeric Substance Black Yeast Fungal Association Polar Biol Black Fungus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aoki, M., Nakano, T., Kanda, H. and Deguchi, H. (1998). Photobionts isolated from Antarctic lichens. J. Mar. Biotechnol. 6: 39-43.Google Scholar
  2. Arcangeli, C. and Cannistraro, S. (2000). In situ Raman microspectroscopic identification and local-ization of carotenoids; approach to monitoring of UV-B irradiation stress on Antarctic fungus. Biospectroscopy 57: 178-186.Google Scholar
  3. Arcangeli, C., Zucconi, L., Onori, S. and Cannistraro, S. (1997). Fluorescence study on whole Antarctic fungal spores under enhanced UV irradiation. J. Photochem. Photobiol., B. Biol. 39: 258-264.CrossRefGoogle Scholar
  4. Armstrong, A.R. (2003). Could lichens grow on Mars? Microbiologist, December 2003: 30-33.Google Scholar
  5. Ascaso, C. and Wierzchos, J. (2003). The search for biomarkers and microbial fossils in Antarctic rock microhabitats. Geomicrobiol. J. 20: 439-450.CrossRefGoogle Scholar
  6. Ascaso, C., Souza-Egipsy, V. and Sancho, L.G. (2003). “Locating water in the dehydrated thallus of lichens from extreme microhabitats (Antarctica).” Biblioth. Lichenol., 85: 215-223.Google Scholar
  7. Ascaso, C., Wierzchos, J., Speranza, M., Gonzalez, AM., De los Ríos, A. and Alonso, J. (2005). Fossil protists and fungi in amber and rock substrates. Micropaleontology 51: 59-72.Google Scholar
  8. Azmi, O.R. and Seppelt, R.D. (1997). Fungi of the Windmill Islands, Continental Antarctica. Effect of temperature, pH and culture medium on the growth of selected microfungi. Polar Biol. 18: 128-134.CrossRefGoogle Scholar
  9. Bommer E. and Rousseau M. (1900). Note préliminaire sur les champignons recueillis par l’Expedition Antarctique Belge. Bulletin de la Casse des Sciences (Académie Royale de Belgique), Bruxelles: 640-646.Google Scholar
  10. Broady, P.A. and Weinstein, R.N. (1998) Algae, lichens and fungi in La Gorge Mountains, Antarctica. Antarct. Sci. 10: 376-385.Google Scholar
  11. Brown, A.D. (1978). Compatible solutes and extracellular water stress in eukaryotic microorganisms. Adv. Microbial. Physiol. 17: 181-242.CrossRefGoogle Scholar
  12. Büdel, B., Karsten, U. and Garcia-Pichel, F. (1997). Ultraviolet-absorbing scytonemin and mycosporine-like amino acid derivatives inexposed, rock-inhabiting cyanobacterial lichens. Oecologia 112: 165-172.CrossRefGoogle Scholar
  13. Buffoni Hall, R.S., Bornman, J.F. and Björn, L.A. (2002). UV-induced changes in pigment content and light penetration in the fruticose lichen Cladonia arbuscula ssp. mitis. J. Photochem. Photobiol., B. Biol. 66: 13-20.CrossRefGoogle Scholar
  14. Chertov, O., Gorbushina, A. and Deventer, B. (2004). A model for microcolonial fungi growth on rock surfaces. Ecological Model. 177: 415-426.CrossRefGoogle Scholar
  15. Clark, M.S., Clarke, A., Cockell, C.S., Convey, P., Detrich, H.W., Fraser, K.P.P., Johnston, I.A., Methe, B.A., Murray, A.E., Peck, L.S., Römisch, K. and Rogers, A.D. (2004). Antarctic genomics. Comp. Funct. Genomics 5: 230-238.CrossRefPubMedGoogle Scholar
  16. Cowan, D. A., and Tow, L. A. (2004). “Endangered Antarctic environments.” Annu. Rev. Microbiol. 58: 649-690.CrossRefPubMedGoogle Scholar
  17. de Hoog, G.S., Göttlich, E., Platas, G., Genilloud, O., Leotta, G. and van Brummelen, J. (2005). Evolution, taxonomy and ecology of the genus Thelebolus in Antarctica. Stud. Mycol. 51: 33-76.Google Scholar
  18. de la Torre, J.R., Goebel, B.M., Friedmann, E.I. and Pace, N.R. (2003). Microbial diversity of cryp-toendolithic communities from the McM urdo Dry Valleys, Antarctica. Appl. Environ. Microbiol. 69: 3585-3867.Google Scholar
  19. De los Ríos, A., Wierzchos, J., Sancho, L.G., Grube, M. and Ascaso, C. (2002). Microbial endolithic biofilms: a means of surviving the harsh conditions of the Antarctic. Proceedings of the Second European Workshop on Exo/Astrobiology, Graz, Austria, 16-19 September 2002 (ESA SP-518, November 2002).Google Scholar
  20. De los Ríos, A., Wierzchos, J., Sancho, L.G., Ascaso, C. (2003). Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems. Environ. Microbiol. 5: 231-237.CrossRefGoogle Scholar
  21. De los Ríos, A., Wiezchos, J., Sancho, L. G., and Ascaso, C. (2004). “Exploring the physiological state of continental Antarctic endolithic microorganisms by microscopy.” FEMS Microbiol. Ecol. 50: 143-152.CrossRefGoogle Scholar
  22. De los Ríos, A., Wierzchos, J., Sancho, L. G., Green, A., and Ascaso, C. (2005a). “Ecology of endolithic lichens colonizing granite in continental Antarctica.” The Lichenol. 37: 383-395.CrossRefGoogle Scholar
  23. De los Ríos, A., Sancho, L. G., Grube, M., Wierzchos, J., and Ascaso, C. (2005b). “Endolithic growth of two Lecidea lichens in granite from continental Antarctica detected by molecular and microscopy techniques.” New Phytol. 165: 181-190.CrossRefPubMedGoogle Scholar
  24. De los Ríos, A., Grube, M., Sancho, L. G., and Ascaso, C. (2007) Ultrastructural and genetic char-acteristics of endolithic cyanobacterial biofilms colonizing Antarctic granite rocks. FEMS Microbiol. Ecol. 59: 386-395.CrossRefGoogle Scholar
  25. de Vera, J.P., Horneck, G., Rettberg, P. and Ott, S. (2003). The potential of the lichen symbiosis to cope with extreme conditions of outer space - I. Influence of UV radiation and space vacuum on the vitality of lichens symbiosis and germination capacity. Int. J. Astrobiology 1: 285-293.CrossRefGoogle Scholar
  26. de Vera, J.P., Horneck, G., Rettberg, P. and Ott, S. (2004a). The potential of the lichen symbiosis to cope with extreme conditions of outer space - II: germination capacity of lichen ascospores in response to simulated space conditions. Adv Space Res 33: 1236-1243.CrossRefPubMedGoogle Scholar
  27. de Vera, J.P., Horneck, G., Rettberg, P. and Ott, S. (2004b). In the context of panspermia: may lichens serve as shuttles for their bionts in space? Proceedings of the Third European Workshop on Exo-Astrobiology, Mars: The search for Life, 18-20 November 2003, Madrid, Spain (Eds R.A. Harris and L. Ouwehand), ESA SP-545, Noordwijk, The Netherlands, ESA Publications Division, ISBN 92-9092-856-5, pp 197-198.Google Scholar
  28. Dyer, P.S., Murtagh, G.J. (2001). Variation in the ribosomal ITS-sequences of the lichens Buellia frigida and Xanthoria elegans from the Vestfold Hills, eastern Antarctica. Lichenol. 33: 151-159.CrossRefGoogle Scholar
  29. Fenice, M., Selbmann, L., Zucconi, L. and Onofri S. (1997). Production of extracellular enzymes by Antarctic fungal strains. Polar Biol. 17: 275-280.CrossRefGoogle Scholar
  30. Fenice, M., Selbmann, L., Di Giambattista, R. and Federici, F. (1998). Chitinolytic activity at low temperature of an Antarctic strain (A3) of Verticillium lecanii. Res. Microbiol. 149: 289-300.CrossRefPubMedGoogle Scholar
  31. Feofilova, E.P., Tereshina, V.M. and Gorova, I.B. (1994). Changes in carbohydrate composition of fungi during adaptation to thermostress. Microbiol. 63: 442-445.Google Scholar
  32. Friedmann, E.I. (1982). Endolithic microorganisms in the Antarctic cold desert. Science 215: 1045-1053.CrossRefPubMedGoogle Scholar
  33. Friedmann, E.I., Druk, A.Y. and McKay, C.P. (1994). Limits of life and microbial extinction in the Antarctic desert. Antarct. J. U.S. 29: 176-179.Google Scholar
  34. Friedmann, E.I. and Koriem, A.M. (1989). Life on Mars: how it disappeared (if it was ever there). Adv Space Res 9: 167-172.CrossRefPubMedGoogle Scholar
  35. Friedmann, E.I. and Ocampo, R. (1976). Endolithic blue-green algae in the dry valleys: primary pro-ducers in the Antarctic desert ecosystem. Science 193: 1247-1249.CrossRefPubMedGoogle Scholar
  36. Friedmann, E.I. and Sun, H.J. (2005). Communities adjusting their temperature optima by shifting producer to consumer ratio, shown in lichens as models: I. Hypothesis. Microb. Ecol. 49: 523-527.Google Scholar
  37. Friedmann, E.I. and Weed, R. (1987). Microbial trace-fossil formation, biogenous and abiotic weathering in the Antarctic cold desert. Science 236: 703-705.CrossRefPubMedGoogle Scholar
  38. Friedmann, E.I., McKay, C.P. and Nienow, J.A. (1987). The cryptoendolithic microbial environment in the Ross Desert of Antarctica: satellite-transmitted continuous nanoclimate data, 1984 to 1986. Polar Biol. 7: 273-287.CrossRefPubMedGoogle Scholar
  39. Gazert, H. (1912). Untersuchungen über Meeresbakterien und ihren Einfluss auf den Stoffwechsel in Meere. Deutsche Südpolar-Expedition 1901-1903, Georg Reimer, Berlin 7(3): 1-296.Google Scholar
  40. Golubic, S., Friedmann, E.I. and Schneider, J. (1981) The lithobiontic ecological niche, with special reference to microorganisms. J. Sediment. Petrol. 51: 475-478.Google Scholar
  41. Gorbushina, A.A., Beck, A. and Schulte, A. (2005). Microcolonial rock inhabiting fungi and lichen photobionts: evidence for mutualistic interactions. Mycol. Res. 109: 1288-1296.CrossRefPubMedGoogle Scholar
  42. Grant, W.D. (2004). Life at low water activity. Phil. Trans. R. Soc. London B 359: 1249-1267.CrossRefGoogle Scholar
  43. Green, T.G.A., Schroeter, B. and Sancho, L. (1999) Plant life in Antarctica. In: F.I. Pugnaire, and F. Valladares (eds.) Handbook of Functional Plant Ecology. Marcel Dekker, New York: 495-543.Google Scholar
  44. Gunde-Cimerman, N., Zalar, P., Petrovic, U., Turk, M., Kogej, T., de Hoog, G.S. and Plemenitaš, A. (2004). Fungi in salterns. In: A. Ventosa (ed.), Halophilic microorganisms. Springer-Verlag, Berlin: 103-113.Google Scholar
  45. Gunde-Cimerman, N., Oren, A., Plemenitaš, A. (2005). Adaptation to life at high salt concentrations in Archaea, Bacteria, and Eukarya. Springer, The Netherlands. 577 p.Google Scholar
  46. Haranczyk, H., Grandjean, J., Olech, M. and Michalik, M. (2003). Freezing of water bound in lichen thallus as observed by 1HNMR. II. Freezing protection mechanisms in a cosmopolitan lichen Cladonia mitis and in Antarctic lichen species at different hydration levels. Colloids and Surfaces B: Biointerfaces 28: 251-260.CrossRefGoogle Scholar
  47. Hawksworth, D.L. (2005). Life-style choices in lichen-forming and lichen-dwelling fungi. Mycol. Res. 109: 135-136.CrossRefGoogle Scholar
  48. Hughes, K.A. (2006). Solar UV-B radiation, associated with ozone depletion, inhibits the Antarctic terrestrial microalga, Stichoccus bacillaris. Polar Biol. 29: 327-336.CrossRefGoogle Scholar
  49. Huston, A.L., Krieger-Brockett, B.B. and Deming, J.W. (2000). Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environ. Microbiol. 2: 383-388.CrossRefPubMedGoogle Scholar
  50. Kappen, L. (2004). The diversity of lichens in Antarctica, a review and comments. Biblioth. Lichenol. 88: 331-343.Google Scholar
  51. Kerry, E. (1990). Effects of temperature on growth rates of fungi from subantarctic Macquarie Island and Casey, Antarctica. Polar Biol. 10: 293-299.Google Scholar
  52. Kogej, T., Wheeler, M.H., RiÏner, T.L. and Gunde-Cimerman N. (2004). Evidence for 1,8-dihydroxy-naphthalene melanin in three halophilic black yeasts grown under saline and non-saline conditions. FEMS Microbiol. Lett. 232: 203-209.CrossRefPubMedGoogle Scholar
  53. Kogej, T., Gostincar, C., Volkmann, M., Gorbushina, A.A. and Gunde-Cimerman, N. (2006) Mycosporines in extremophilic fungi - Novel complementary osmolytes ? Environ. Chem. 3: 105-110.CrossRefGoogle Scholar
  54. Kranner, I., Cram, W.J., Zorn, M., Wornik, S., Yoshimura, I., Stabentheiner, E. and Pfeifhofer, H.W. (2005). Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc. Natl. Acad. Sci. USA 102: 3141-3146.CrossRefPubMedGoogle Scholar
  55. Lewis Smith, R.I. (1984). Terrestrial plant biology of the sub-Antarctic and Antarctic. In: Laws R.M., 8th edition. Antarctic Ecology 1: 61-162. Academic Press, London.Google Scholar
  56. McLean, A.L. (1918). Bacteriological and other researches, Austral-Asian Antarctic Expedition 1911-1914. Scientific Reports, Sydney, Series C 7: 15-44.Google Scholar
  57. Möller, C. and Gams, W. (1993). Two new hyphomycetes isolated from Antarctic lichens. Mycotaxon 48: 441-450.Google Scholar
  58. Nienow, J.A. and Friedmann, E.I. (1993). Terrestrial lithophytic (rock) communities. In: E.I. Friedmann, (ed.) Antarctic microbiology. Wiley-Liss, New York: 343-412.Google Scholar
  59. Nkem, J.N., Wall, D.H., Virginia, R.A., Barrett, J.E., Broos, E.J., Porazinska D.L. and Adams B.J. (2006). Wind dispersal of soil invertebrates in the McMurdo Dry Valleys, Antarctica. Polar Biol. 29: 346-352.CrossRefGoogle Scholar
  60. Ocampo-Friedmann, R. and Friedmann, E.I. (1993). Biologically active substances produced by Antarctic cryptoendolithic fungi. Antarct J US 28: 252-254.PubMedGoogle Scholar
  61. Onofri, S., Pagano, S., Zucconi, L. and Tosi, S., 1999. Friedmanniomyces endolithicus (Fungi, Hyphomycetes), anam.-gen. and sp. nov., from continental Antarctica. Nova Hedwigia 68:175-181.Google Scholar
  62. Onofri, S., Zucconi, L., Selbmann, L., de Hoog, G.S., Barreca, D., Ruisi, S. and Grube M. (2007a). Fungi from Antarctic desert rocks as analogues for Martian life. In: Cockell, C.S. (ed.), Microorganisms and Martian Environment, European Space Agency Special Publication Chapter 6 (in press).Google Scholar
  63. Onofri, S., Zucconi, L. and Tosi, S. (2007b). Continental Antarctic Fungi. IHW-Verlag, Eching, 247 pp.Google Scholar
  64. Ott, S., Brinkmann, M., Wirtz, N. and Lumbsch, H.T. (2004). Mitochondrial and nuclear ribosomal DNA data do not support the separation of the Antarctic lichens Umbilicaria kappenii and Umbilicaria antarctica as distinct species. Lichenologist 36: 227-234.CrossRefGoogle Scholar
  65. Øvstedal, D.O. and Lewis Smith, R.I. (2001). Lichens of Antarctica and South Georgia. A guide to their identification and ecology. Studies in Polar Research, Cambridge University Press, Cambridge, UK, 411 p.Google Scholar
  66. Peck, L.S., Clark, M.S., Clarke, A., Cockell, C.S., Convey, P., Detrich, III H.W., Fraser, K.P.P., Johnston, I.A., Methe, B.A., Murray, A.E., Römisch, K. and Rogers, A.D., 2005. Genomics: applications to Antarctic ecosystems. Polar Biol. 28: 351-365.CrossRefGoogle Scholar
  67. Poelt, J. and Obermayer, W. (1990). Über Thallosporen bei einigen Krustenflechten. Herzogia 8: 273-288.Google Scholar
  68. Robinson, C.H. (2001). Cold adaptation in Arctic and Antarctic fungi. New Phytol. 151: 341-353.CrossRefGoogle Scholar
  69. Romeike, J., Friedl, T., Helms, G. and Ott, S. (2002). Genetic diversity of algal and fungal partners in four species of Umbilicaria (Lichenized Ascomycetes) along a transect of the Antarctic penin-sula. Mol. Biol. Evol. 19: 1209-17.PubMedGoogle Scholar
  70. Ruibal, C., Platas, G. and Bills, G.F. (2005). Isolation and characterization of melanized fungi from limestone in Mallorca. Mycol. Progr. 4: 23-38.CrossRefGoogle Scholar
  71. Ruisi, S., Barreca, D., Selbmann, L., Zucconi, L. and Onofri, S. (2007). Fungi in Antartica. Rev. Environ. Sci. Biotechnol. 6: 127-141.CrossRefGoogle Scholar
  72. Sancho, L.G., Schulz, F., Schroeter, B. and Kappen, L. (1999). Bryophyte and lichen flora of South Bay (Livingston Island: South Shetland Islands, Antarctica). Nova Hedwigia 68: 301-337.Google Scholar
  73. Sancho, L.G., de la Torre, R., Horneck, G., Ascaso, C., de los Rios, A., Pintado, A., Wierzchos, J. and Schuster, M, (2007). Lichens survive in space: Results from the 2005 LICHENS experiment. Astrobiol. 7(3) (in press).Google Scholar
  74. Schoflied, E. and Ahmadjian, V. (1972). Field observations and laboratory studies of some Antarctic cold desert cryptogams. Antarct. Res. Ser. 20: 97-142.Google Scholar
  75. Schroeter, B. and Sancho, L.G. (1996). Lichens growing on glass in Antarctica. Lichenologist 28: 385-390.Google Scholar
  76. Selbmann, L., Onofri, S., Fenice, M., Federici, F. and Petruccioli, M. (2002). Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res. Microbiol. 153: 585-592.CrossRefPubMedGoogle Scholar
  77. Selbmann, L., de Hoog, G.S., Mazzaglia, A., Friedmann, E.I. and Onofri, S. (2005). Fungi at the edge of life: cryptoendolithic black fungi from Antarctic deserts. Stud. Mycol. 51: 1-32.Google Scholar
  78. Sterflinger, K. (2006). Black yeasts and meristematic fungi: ecology, diversity and identification. In: Péter, G. and Rosa, C. (Eds), Biodiversity and Ecophysiology of Yeasts. The Yeast Handbook. Springer-Verlag, Berlin, pp. 501-514.CrossRefGoogle Scholar
  79. Sterflinger, K. and Krumbein, W.E. (1997). Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestones. Geomicrobiol. J. 14: 219-230.CrossRefGoogle Scholar
  80. Sun, H.J. and Friedmann E.I. (2005). Communities adjusting their temperature optima by shifting producer to consumer ratio, shown in lichens as models: II. Experimental verification. Microb. Ecol. 49: 528-535.CrossRefPubMedGoogle Scholar
  81. Torres, A., Hochberg, M., Pergament, I., Smoun, R., Niddam, V., Dembitsky, V.m., Temina, M., Dor, I., Lev, O., Srebnik, M. and Enk, C.D. (2004). A new UV-B absorbing mycosporine with photo protective activity from the lichenized ascomycete Collema cristatum. Eur. J. Biochem. 271: 780-784.Google Scholar
  82. Tsiklinsky, Mlle (1908). La flore microbienne dans les regions du Pole Sud. Expedition Antarctique Française. 1903-1905, vol 3. Masson, Paris, 33 p.Google Scholar
  83. Villar, S.E.J., Edwards, H.G.M. and Cockell, C. (2005). Raman spectroscopy of endoliths from Antarctic cold desert environments. Analyst 130: 156-162.CrossRefPubMedGoogle Scholar
  84. Vincent, W.F. (2000). Evolutionary origins ofAntarctic microbiota: invasion, selection andendemism. Antarct. Sci. 12: 374-385.CrossRefGoogle Scholar
  85. Volkmann, M., Whitehead, K., Rüttgers, H., Rullkötter, J. and Gorbushina, A.A. (2003). Mycosporine-glutamicol-glucoside: a natural UV absorbing secondary metabolite of rockinhabiting microcolonial fungi. Rapid. Comm. Mass. Spectr. 17: 897-902.CrossRefGoogle Scholar
  86. Weinstein, R.N., Montiel, P.O. and Johnstone, K. (2000). Influence of growth temperature on lipid and soluble carbohydrate synthesis by fungi isolated from fellfield soil in the maritime Antarctic. Mycologia 92: 222-229.CrossRefGoogle Scholar
  87. Wierzchos, J. and Ascaso, C. (2001). “Life, decay and fossilisation of endolithic microorganisms from the Ross Desert, Antarctica: suggestions for in situ further research.” Polar Biol. 24: 863-868.CrossRefGoogle Scholar
  88. Wierzchos, J. and Ascaso, C. (2002). “Microbial fossil record of rocks from the Ross Desert Antarctica: implications in the search for past life in Mars.” Int. J. Astrobiol. 1: 51-60.CrossRefGoogle Scholar
  89. Wierzchos, J., Ascaso, C., Sancho, LG. and Green, A. (2003). “Iron-rich diagenetic minerals are bio-markers of microbial activity in Antarctic rocks.” Geomicrobiol. J. 20: 15-24.CrossRefGoogle Scholar
  90. Wierzchos J., Sancho, LG. and Ascaso, C. (2005). “Biomineralization of endolithic microbes in rocks from the McMurdo Dry Valleys of Antarctica: implications for microbial fossil formation and their detection.” Environ. Microbiol. 7: 566-575.CrossRefPubMedGoogle Scholar
  91. Wierzchos J., Ascaso C., Ager, F., García-Orellana I., Carmona-Luque, A. and Respaldiza, M.A. (2006). Identifying elements in rocks from the Dry Valleys desert (Antarctica) by ion beam pro-ton induced X-ray emission. Nuclear Instr. Meth. Physics Res. 249: 571-574.Google Scholar
  92. Wirtz, N., H.T. Lumbsch, T.G.A., Green, R., Tuerk, R., Pintado, L., Sancho, B. and Schroeter, B. (2003). Lichen fungi have low cyanobiont selectivity in maritime Antarctica. New Phytol. 160: 177-183.Google Scholar
  93. Wollenzien, U., de Hoog, G.S. Krumbein, W.E. and Urzì, C. (1995). On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci. Total Environ. 167: 287-294.Google Scholar
  94. Wynn-Williams, D.D. and Edwards, H.G.M. (2001). Environmental UV radiation: biological strategies for protection and avoidance, in: G. Horneck and C. Baumstark-Khan (eds.) Astrobiology: the quest for the conditions of life Springer-Verlag, Berlin, pp. 244-259.Google Scholar
  95. Young, H., Patterson, V.J. (1982). A UV protective compound from Glomerella cingulata - a mycosporine. Photochem. 21: 1075-1077.CrossRefGoogle Scholar
  96. Wirtz, N., H.T. Lumbsch, T.G.A., Green, R., Tuerk, R., Pintado, L., Sancho, B. and Schroeter, B. (2003). Lichen fungi have low cyanobiont selectivity in maritime Antarctica. New Phytol. 160: 177-183.Google Scholar
  97. Zalar, P., de Hoog, G.S. and Gunde-Cimerman, N. (1999). Ecology of halotolerant dothideaceous black yeasts. Stud. Mycol. 43: 38-48.Google Scholar
  98. Zucconi, L., Pagano, S., Fenice, M., Selbmann, L., Tosi, S. and Onofri, S. (1996). Growth tempera-ture preferences of fungal strains from Victoria Land, Antarctica. Polar Biol. 16: 53-61.Google Scholar
  99. Zucconi, L., Ripa, C., Selbmann, L., and Onofri S. (2002). Effects of UV on the spores of the fungal species Arthrobotrys oligospora and A. ferox. Polar Biol. 25: 500-505.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Silvano Onofri
    • 1
  • Laura Zucconi
    • 1
  • Laura Selbmann
    • 1
  • Sybren de Hoog
    • 2
  • Dra Asunción de los Ríos
    • 3
  • Serena Ruisi
    • 1
  • Martin Grube
    • 4
  1. 1.Dipartimento di Ecologia e Sviluppo Economico SostenibileUniversità degli Studi della Tuscia, Largo dell'UniversitàItaly
  2. 2.Centraalbureau voor SchimmelculturesThe Netherlands
  3. 3.Centro de Ciencias Medioambientales (CSIC)Spain
  4. 4.Institute of Plant SciencesKarl-Franzens-University GrazAustria

Personalised recommendations