Advertisement

Meromictic Lakes as Habitats for Protists

Life in the Chemocline and Below?
  • Dag Klaveness
  • Finn Løvhøiden
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

The meromictic lake is, in effect, two different habitats separated by a distinct vertical gradient (“the chemocline”, Hutchinson, 1937). By passing through the chemocline, the conditions with regard to dissolved salts and organic matter, particulates, gases and pH/eH may be altered significantly. Contrary to holomictic lakes where gradients may be established seasonally by temperature differences, the chemical gradient in truly meromictic lakes is sufficiently robust to withstand seasonal mixis. While the meromictic condition in temperate lakes may last for several to thousands or more years, some basins of marine origin may have conserved a gradient towards anoxia for millions of years, if unperturbed by glaciations. The origin, terminology, properties and significance of land-locked waters (fjords being isolated from the sea by postglacial isostatic equilibration) and various aspects of meromixis have repeatedly been discussed in papers and reviews (e.g., Strøm, 1936; Findenegg, 1937; Hutchinson, 1937; Kjensmo, 1967; Walker and Likens, 1975; Degens and Stoffers, 1976; Hakala, 2004) and textbooks (e.g., Ruttner, 1940; Hutchinson, 1957; Wetzel, 2001; Kalff, 2002). A review of biological implications at the chemocline level has been written by Tyler and Vyverman (1995). More information is hidden in the literature, and emerging from further studies of meromictic lakes of different origin (cf. Hakala, 2004). Here, information about protists inhabiting the chemocline and possibly the monimolimnion (or anoxic water of isolated fjords) are presented from unpublished observations and from literature. Since these authors’ experience is mainly from Norway and Sweden, examples will be chosen from the geo-diversity of fjords and lakes here. This presentation is a sequel and extension to the review by Tyler and Vyverman (1995) and the treatise on meromictic lakes in Finland by Hakala (2004).

Keywords

Brackish Water Anoxic Condition Freshwater Biology Meromictic Lake Swedish Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adl, S.M., Simpson, A.G.B., Farmer, M.A., Andersen, R.A., Anderson, O.R., Barta, J.R., Bowser, S.S., Brugerolle, G., Fensome, R.A., Fredericq, S., James, T.Y., Karpov, S., Kugrens, P., Krug, J., Lane, C.E., Lewis, L.A., Lodge, J., Lynn, D.H., Mann, D.G., McCourt, R.M., Mendoza, L., Moestrup, Ø., Mozley-Standridge, S.E., Nerad, T.A., Shearer, C.A., Smirnov, A.V., Spiegel, F.W. and Taylor, M.F.J.R. 2005. The new higherlevel classification of eukaryotes with emphasis on the taxonomy of protists. Journal of Eukaryotic Microbiology 52, 399-451.CrossRefPubMedGoogle Scholar
  2. Arvola, L., Salonen, K., Kankaala, P. and Lehtovaara, A. 1992. Vertical distribution of bacteria and algae in a steeply stratified humic lake under high grazing pressure from Daphnia longispina. Hydrobiologia 229, 253-269.Google Scholar
  3. Baker, A.L. 1970. An inexpensive microsampler. Limnology and Oceanography 15, 158-160.Google Scholar
  4. Bark, A.W. 1981. The temporal and spatial distribution of planktonic and benthic protozoan com-munities in a small productive lake. Hydrobiologia 85, 239-255.CrossRefGoogle Scholar
  5. Barland, K. 1991. Trapped seawater in two Norwegian lakes: Kilevannet, a “new” lake with old trapped seawater, and Rørholtfjorden. Aquatic Sciences 53, 90-98.CrossRefGoogle Scholar
  6. Behnke, A., Bunge, J., Barger, K., Breiner, H-W., Alla, W. and Stoeck, T. 2006. Microeukaryote com-munity patterns along an O2/H2S gradient in a supersulfidic anoxic fjord (Framvaren, Norway). Applied and Environmental Microbiology 72, 3626-3636.CrossRefPubMedGoogle Scholar
  7. Blakar, I.A. 1978. A simple water and plankton sampler. Freshwater Biology 8, 533-537.CrossRefGoogle Scholar
  8. Blakar, I.A. 1979. A close-interval water sampler with minimal disturbance properties. Limnology and Oceanography 24, 983-988.Google Scholar
  9. Bøyum, A. 1973. Salsvatn, a lake with old sea water. Schweizerische Zeitschrift für Hydrologie 35, 262-277.CrossRefGoogle Scholar
  10. Bøyum, A. and Kjensmo, J. 1970. Kongressvatn. A crenogenic meromictic lake at Western Spitsbergen. Archiv für Hydrobiologie 67, 542-552.Google Scholar
  11. Braarud, T. and Føyn, B. 1958. Phytoplankton observations in a brackish water locality of south-east Norway. Nytt Magasin for Botanikk 6, 47-73.Google Scholar
  12. Butcher, R.W. 1961. An Introductory Account of the Smaller Algae of British Coastal Waters. Part VIII: Euglenophyceae = Euglenineae. Fishery Investigations Ser. IV, Ministry of Agriculture, Fisheries and Food. Her Majesty’s Stationery Office, London. v + 1-17 + Pl. I-II.Google Scholar
  13. Cavalier-Smith, T. 2004. Only six kingdoms of life. Proceedings of the Royal Society of London B 271,1251-1262.CrossRefGoogle Scholar
  14. Christen, H.R. 1958. Farblose Euglenalen aus dem Hypolimnion des Hausersees. Schweizerische Zeitschrift für Hydrologie 20, 141-176.CrossRefGoogle Scholar
  15. Christen, H.R. 1959. New colorless Eugleninae. Journal of Protozoology 6, 292-303.Google Scholar
  16. Christen, H.R. 1963. Zur Taxonomie der farblosen Eugleninen. Nova Hedwigia 4, 437-464.Google Scholar
  17. Cohen, Y. 1978. Consumption of dissolved nitrous oxide in an anoxic basin, Saanich Inlet, British Columbia. Nature 272, 235-237.CrossRefGoogle Scholar
  18. Conrad, W. and van Meel, L. 1952. Matériaux pour une Monographie de Trachelomonas Ehrenberg, C.,1834, Strombomonas Deflandre, G.1930 et Euglena Ehrenberg, C.,1832, genres d’Euglénacées. Mémoires, Institut Royal des Sciences Naturelles de Belgique, No. 124, 176 pp. + Pl. I-XIX.Google Scholar
  19. Croome, R.L. and Tyler, P.A. 1985. Structure and ecology of the flagellate Scourfieldia caeca (Korsh.) Belcher & Swale in two meromictic lakes in Tasmania. Australian Journal of Marine and Freshwater Research 36, 413-419.CrossRefGoogle Scholar
  20. Davison, W. and Finlay, B.J. 1986. Ferrous iron and phototrophy as alternative sinks for sulphide in the hypolimnia of two adjacent lakes. Journal of Ecology 74, 663-673.CrossRefGoogle Scholar
  21. Degens, E. and Stoffers, P. 1976. Stratified waters as a key to the past. Nature 263, 22-27.CrossRefGoogle Scholar
  22. Dewey, V.C. and Kidder, G.W. 1940. Growth studies on ciliates. VI. Diagnosis, sterilization and growth characteristics of Perispira ovum. The Biological Bulletin 79, 255-271.CrossRefGoogle Scholar
  23. Ettl, H. 1983. Chlorophyta I. Phytomonadina. In: H. Ettl, J.Gerloff, H. Heynig and D. Mollenhauer (eds.): Süsswasserflora von Mitteleuropa, Bd. 9. Gustav Fischer Verlag, Stuttgart. 807 pp.Google Scholar
  24. Faafeng, B. 1976. Fotosyntetiske bakterier. Utbredelse og funksjon i naturen. (in Norwegian, with English summary and legends). Blyttia 34, 53-65.Google Scholar
  25. Fenchel, T. and Bernard, C. 1993. A purple protist. Nature 362, 300.CrossRefGoogle Scholar
  26. Fenchel, T. and Finlay, B.J. 1990. Anaerobic free-living protozoa - growth efficiencies and the structure of anaerobic communities. FEMS Microbiology Ecology 74, 269-275.CrossRefGoogle Scholar
  27. Fenchel, T. and Finlay, B.J. 1991. The biology offree-living anaerobic ciliates. European Journal of Protistology 26, 201-215.Google Scholar
  28. Findenegg, I. 1937. Holomiktische und meromiktische Seen. Internationale Revue Hydrobiologie 35, 586-610.CrossRefGoogle Scholar
  29. Finlay, B.J., Span, A.S.V. and Harman, J.M.P. 1983. Nitrate respiration in primitive eukaryotes. Nature 303, 333-336.CrossRefGoogle Scholar
  30. Finlay, B.J., Clarke, K.J., Cowling, A.J., Hindle, R.M., Rogerson, A. and Berninger, U-G. 1988. On the abundance and distribution of protozoa and their food in a productive freshwater pond. European Journal of Protistology 23, 205-217.Google Scholar
  31. Foissner, W. and Berger, H. 1996. A user-friendly guide to the ciliates (Protozoa, Ciliophora) com-monly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biology 35, 375-482.Google Scholar
  32. Gervais, F. 1998. Ecology of cryptophytes coexisting near a freshwater chemocline. Freshwater Biology 39, 61-78.CrossRefGoogle Scholar
  33. Hakala, A. 2004. Meromixis as a part of lake evolution - observations and a revised classification of true meromictic lakes in Finland. Boreal Environment Research 9, 37-53.Google Scholar
  34. Hongve, D. 1974. Hydrographical features of Nordbytjernet, a manganese-rich meromictic lake in SE Norway. Archiv für Hydrobiologie 74, 227-246.Google Scholar
  35. Hongve, D. 1980. Chemical stratification and stability of meromictic lakes in the Upper Romerike dis-trict. Schweizerische Zeitschrift für Hydrologie 42, 171-195.CrossRefGoogle Scholar
  36. Hongve, D. 1994. Nutrient metabolism (C, N, P, and Si) in the trophogenic zone of a meromictic lake. Hydrobiologia 277, 17-39.CrossRefGoogle Scholar
  37. Hongve, D. 1997. Cycling of iron, manganese, and phosphate in a meromictic lake. Limnology and Oceanography 42, 635-647.CrossRefGoogle Scholar
  38. Hongve, D. 1999. Long-term variation in the stability of the meromictic lake Nordbytjernet caused by groundwater fluctuations. Nordic Hydrology 30,21-38.Google Scholar
  39. Hongve, D. 2002. Seasonal mixing and genesis of endogenic meromixis in small lakes in southeastern Norway. Nordic Hydrology 33, 189-206.Google Scholar
  40. Huber-Pestalozzi, G. 1955. Das Phytoplankton des Süsswassers. Systematik und Biologie. 4. Teil. Euglenophyceen. Die Binnengewässer 16 (4). E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart. 606 pp. + Taf. I-CXIV.Google Scholar
  41. Huber-Pestalozzi, G. 1968. Das Phytoplankton des Süsswassers. Systematik und Biologie. 3. Teil. Cryptophyceae, Chloromonadophyceae, Dinophyceae. 2. Auflage. Die Binnengewässer 16 (3). E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart. 322 pp.Google Scholar
  42. Hutchinson, G.E. 1937. A contribution to the limnology of arid regions primarily founded on obser-vations made in the Lahontan Basin. Transactions of the Connecticut Academy of Arts and Science 33, 47-132.Google Scholar
  43. Hutchinson, G.E. 1957. A Treatise on Limnology. Volume I. Geography, Physics, and Chemistry. John Wiley and Sons, Inc., New York. 1015 pp.Google Scholar
  44. Hutchinson, G.E. 1967. A Treatise on Limnology. Volume II. Introduction to Lake Biology and the Limnoplankton. John Wiley & Sons, Inc., New York. 1115 pp.Google Scholar
  45. Ishimitsu, M. and Chihara, M. 1984. Four species of Cryptomonas (Class Cryptophyceae) in Japan. The Journal of Japanese Botany 39, 161-169.Google Scholar
  46. Jakobsen, K.S., Tengs, T., Vatne, A., Bowers, H.A., Oldach, D.W., Burkholder, J.A.M., Glasgow, H.B. Jr., Rublee, P.A. and Klaveness, D. 2002. Discovery of the toxic dinoflagellate Pfiesteria in north-ern European waters. Proceedings of the Royal Society, London B 269 (1487), 211-214.CrossRefGoogle Scholar
  47. John, D.M., Whitton, B.A. and Brook, A.J. (eds.) 2002. The Freshwater Algal Flora of the British Isles. Cambridge University Press, Cambridge, United Kingdom. 702 pp.Google Scholar
  48. Johnson, P.W., Donaghay, P.L., Small, E.B. and Sieburth, J. McN. 1995. Ultrastructure and ecology of Perispira ovum (Ciliophora: Lithostomatea): An aerobic, planktonic ciliate that sequesters the chloroplasts, mitochondria, and paramylon of Euglena proxima in a micro-oxic habitat. Journal of Eukaryotic Microbiology 42, 323-335.CrossRefGoogle Scholar
  49. Kahl, A. 1930. I. Allgemeiner Teil und Prostomata. In: Die Tierwelt Deutschlands und der angrenzen-den Meeresteile 18: Urtiere oder Protozoa. 1-180. Jena.Google Scholar
  50. Kalff, J. 2002. Limnology. Inland Water Ecosystems. Prentice-Hall, Inc. New Jersey. 592 pp.Google Scholar
  51. Kirkland, D.W., Platt Bradbury, J. and Dean, W.E. 1983. The heliothermic lake - a direct method of collecting and storing solar energy. Archiv für Hydrobiologie, Suppl. 65, 1-60.Google Scholar
  52. Kjensmo, J. 1967. The development and some main features of “iron-meromictic” softwater lakes. Archiv für Hydrobiologie, Suppl. 32, 139-163.Google Scholar
  53. Klaveness, D. 1977. Morphology, distribution and significance of the manganese-accumulating microorganism Metallogenium in lakes. Hydrobiologia 56, 25-33.CrossRefGoogle Scholar
  54. Klaveness, D. 1984. Studies on the morphology, food selection and growth of two planktonic fresh-water strains of Coleps sp. Protistologica 20, 335-349.Google Scholar
  55. Klaveness, D. 1990. Size structure and potential food value of the plankton community to Ostrea edulis L. in a traditional Norwegian “østerspoll”. Aquaculture 86, 231-247.CrossRefGoogle Scholar
  56. Kugrens, P. and Clay, B.L. 2003. Cryptomonads. In: J.D. Wehr and R.G. Sheath (eds.): Freshwater Algae of North America. Ecology and Classification, pp. 715-755. Academic Press, San Diego, California, USA. 918 pp.Google Scholar
  57. Larsson, P. 1971. Vertical distribution of planktonic rotifers in a meromictic lake; Blankvatn near Oslo, Norway. Norwegian Journal of Zoology 19, 47-75.Google Scholar
  58. Lauterborn, R. 1901. Die “sapropelische” Lebewelt. Zoologischer Anzeiger 24 (No. 635), 50-55.Google Scholar
  59. Lauterborn, R. 1916. Die sapropelische Lebewelt. Ein Beitrag zur Biologie des Faulschlammes natür-licher Gewässer. Verhandlungen des Naturhistorisch-Medizinischen Vereins zu Heidelberg. Neue Folge, 13, 395-481 + Taf. III.Google Scholar
  60. Leedale, G.F. 1967. Euglenoid Flagellates. Prentice-Hall, Inc. Englewood Cliffs, New Jersey. 242 pp.Google Scholar
  61. Leedale, G.F. and Vickerman, K. 2000. Phylum Euglenozoa Cavalier-Smith, 1981. In: J.J. Lee, G.F. Leedale and P. Bradbury (eds.): An Illustrated Guide to the Protozoa. Second Edition. Vol. II, pp. 1135-1157. Society of Protozoologists, Kansas.Google Scholar
  62. Levander, K.M. 1894. Beiträge zur Kenntniss einiger Ciliaten. Acta Societatis pro Fauna et Flora Fennica 9 (7). 87 S. + Taf. I-III.Google Scholar
  63. Lindeman, R.L. 1942. Experimental simulation of winter anaerobiosis in a senescent lake. Ecology 23,1-13.CrossRefGoogle Scholar
  64. Lindholm, T. 1979. Siphon sampling in meromictic lakes. Acta Botanica Fennica 110, 91-93.Google Scholar
  65. Miracle, M.R., Vicente, E., Croome, R.L. and Tyler, P.A. 1991. Microbial microcosms of the chemo-cline of a meromictic lake in relation to changing levels of PAR. Verhandlungen, Internationale Vereinigung für theoretische und angewandte Limnologie 24, 1139-1144.Google Scholar
  66. Perfilev, B.V. and Gabe, D.R. 1969. Capillary methods of investigating micro-organisms. Oliver & Boyd, Edinburgh. 627 pp.Google Scholar
  67. Pringsheim, E.G. 1936. Zur Kenntnis saprotropher Algen und Flagellaten. Archiv für Protistenkunde 87,43-96.Google Scholar
  68. Pringsheim, E.G. 1942. Contributions to our knowledge of saprophytic algae and flagellata. III. Astasia, Distigma, Menoidium and Rhabdomonas. The New Phytologist 41, 171-205.CrossRefGoogle Scholar
  69. Pringsheim, E.G. 1956. Contributions towards a Monograph of the Genus Euglena. Nova Acta Leopoldina, N.F. Band 18, Nr. 125. 168 pp.Google Scholar
  70. Pringsheim, E.G. 1963. Farblose Algen. Ein beitrag zur Evolutionsforschung. Gustav Fischer Verlag, Stuttgart. 471 pp.Google Scholar
  71. Pringsheim, E.G. 1964. Phasengrenzschichten als Wohnorte von Mikroorganismen. Nachrichten der Akademie der Wissenschaften in Göttingen II. Mathematisch-Physikalische Klasse Nr. 15, 207-209.Google Scholar
  72. Psenner, R. and Schlott-Idl, K. 1985. Trophic relationships between bacteria and protozoa in the hypolimnion of a meromictic mesotrophic lake. Hydrobiologia 121, 111-120.CrossRefGoogle Scholar
  73. Reynolds, C.S., Huszar, V., Kruk, C., Naselli-Flores, L. and Melo, S. 2002. Towards a functional clas-sification of the freshwater phytoplankton. Journal of Plankton Research 24, 417-428.CrossRefGoogle Scholar
  74. Ruttner, F. 1940. Grundriss der Limnologie. Walter de Gruyter & Co., Berlin. 167 pp.Google Scholar
  75. Schnepf, E., Winter, S. and Mollenhauer, D. 1989. Gymnodinium aeruginosum (Dinophyta): A blue-green dinoflagellate with a vestigial, anucleate, cryptophycean endosymbiont. Plant Systematics and Evolution 164, 75-91.CrossRefGoogle Scholar
  76. Shalchian-Tabrizi, K., Eikrem, W., Klaveness, D., Vaulot, D., Minge, M.A., Le Gall, F., Throndsen, J., Botnen, A., Massana, R., Thomsen, H.A. and Jakobsen, K.S. 2006. Telonemia, a new protest phylum with affinity to chromist lineages. Proceedings of the Royal Society, London B, 273, 1833-1842. doi:10.1098/rspb.2006.3515.CrossRefGoogle Scholar
  77. Skei, J.M. and Dyrssen, D. (eds.) 1988. Special issue containing papers presented at a mini-workshop on Anoxic Basins, Farsund, Norway, May 1986. Marine Chemistry 23, 209-459.Google Scholar
  78. Skuja, H. 1939. Beitrag zur Algenflora Lettlands II. Acta Horti Botanici Universitatis Latviensis 11/12, 41-169 + Taf. I-XI.Google Scholar
  79. Skuja, H. 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symbolae Botanicae Upsalienses 9 (3), 1-399.Google Scholar
  80. Skuja, H. 1956. Taxonomische und biologische Studien über das Phytoplankton schwedischer Binnengewässer. Nova Acta Regiae Societatis Scientiarum Upsaliensis, Ser. IV. Vol. 16. No. 3. Almqvist & Wiksells Boktryckeri AB, Uppsala.Google Scholar
  81. Skuja, H. 1964. Grundzüge der Algenflora und Algenvegetation der Fjeldgegenden um Abisko in Schwedisch-Lappland. Nova Acta Regiae Societatis Scientiarum Upsaliensis, Ser. IV, Vol. 18 no. 3. pp. 1-465 + Taf. I-LXIX.Google Scholar
  82. Smillie, R.M. 1968. Enzymology of Euglena. In: D.E. Buetow (ed.): The Biology of Euglena. Vol. II Biochemistry, Ch. 1, pp. 1-54. Academic Press, NY and London. 417 pp.Google Scholar
  83. Stabell, T., Andersen, T. and Klaveness, D. 2002. Ecological significance of endosymbionts in a mixotrophic ciliate - an experimental test of a simple model of growth coordination between host and symbiont. Journal of Plankton Research 24, 889-899.CrossRefGoogle Scholar
  84. Stewart, W.D.P. 1968. Nitrogen input into aquatic ecosystems. In: D.F. Jackson (ed.); Algae, Man, and the Environment pp. 53-72. Syracuse University Press, NY.Google Scholar
  85. Stoeck, T., Fowle, W.H. and Epstein, S.S. 2003. Methodology of protistan discovery: from rRNA detection to quality SEM images. Applied and Environmental Microbiology 69, 6856-6863.CrossRefPubMedGoogle Scholar
  86. Stoeck, T., Schwartz, M.V.J., Boenigk, J., Schweikert, M., von der Heyden, S. and Behnke, A. 2005. Cellular identity of an 18S rRNA gene sequence clade within the class Kinetoplastea: the novel genus Actuariola gen. nov. (Neobodonida) with description of the type species Actuariola fram-varensis sp. nov. International Journal of Systematic and Evolutionary Microbiology 55, 2623-2635.CrossRefPubMedGoogle Scholar
  87. Strøm, K.M. 1936. Land-locked waters. Hydrography and bottom deposits in badly-ventilated Norwegian fjords with remarks upon sedimentation under anaérobic conditions. Skrifter, Det Norske Videnskaps-Akademi i Oslo I. Mat.-Naturv. Klasse. 1936. No. 7. pp. 1-85 + Pl. 1-9.Google Scholar
  88. Strøm, K. 1957. A lake with trapped sea-water? Nature (London) 180, 982-983.CrossRefGoogle Scholar
  89. Strøm, K. 1962. Trapped Seawater. New Scientist 13, 384-386.Google Scholar
  90. Strøm, K.M. and Østtveit, H. 1948. Blankvatn. A meromictic lake near Oslo. Skrifter, Det norske Videnskaps-Akademi i Oslo I. Mat.-Naturv. Klasse 1948. No. I. 1-41.Google Scholar
  91. Strøm, T-E. and Klaveness, D. 2003. Hunnebotn: a seawater basin transformed by natural and anthro-pogenic processes. Estuarine, Coastal and Shelf Science 56, 1177-1185.CrossRefGoogle Scholar
  92. Symposium on the Classification of Brackish Waters 1959. Final resolution. The Venice System for the Classification of Marine Waters according to Salinity. In: Symposium on the Classification of Brackish Waters, Venezia 8-14 Aprile 1958, pp. 243-245. Archivio di Oceanografia e Limnologia Vol. 11, Supplemento. 248 pp. Centro Nazionale di Studi Talassografici del Consiglio Nazionale delle Richerche, Venezia.Google Scholar
  93. Tyler, P.A. and Vyverman, W.G. 1995. The microbial market place - trade-offs at the chemocline of meromictic lakes. Progress in Phycological Research 11, 325-370.Google Scholar
  94. Walker, K.F. and Likens, G.E. 1975. Meromixis and a reconsidered typology of lake circulation pat-terns. Verhandlungen, Internationale Vereinigung für theoretische und angewandte Limnologie 19,442-458.Google Scholar
  95. Wehr, J.D. and Sheath, R.G. 2003. Freshwater Algae of North America. Academic Press, San Diego, California, USA. 918 pp.Google Scholar
  96. Wetzel, R.G. 2001. Limnology. Lake and River Ecosystems. Third Edition. Academic Press, San Diego/London. 1006 pp.Google Scholar
  97. Whatley, J.M. and Chapman-Andresen, C. 1990. Phylum Karyoblastea. In: L. Margulis, J. Corliss, M. Melkonian and D.J. Chapman (eds.) Handbook of Protoctista, ch. 13, 167-185. Jones & Bartlett Publishers, Boston. 914 pp.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Dag Klaveness
    • 1
  • Finn Løvhøiden
    • 1
  1. 1.Department of BiologyUniversity of OsloBlindernNorway

Personalised recommendations