Deep-Sea Microbial Eukaryotes in Anoxic, Microoxic, and Sulfidic Environments

  • Virginia P. Edgcomb
  • Joan M. Bernhard
  • Sunok Jeon
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

Measuring the extent of eukaryotic microbial diversity is essential to our understanding of eukaryotic evolution and the structure and function of microbial food webs. In the past several years, molecular approaches have been used to address an increasing interest in the diversity of microbial eukaryotes, particularly that of protists from various marine environments. These have included pelagic environments (e.g., Moon-van der Staay et al., 2001; Massana et al., 2002), deep-sea environments (López-García, 2001), the ocean surface (Díez et al., 2001; Moon-van der Staay et al., 2001), coastal environments (Massana et al., 2004), and a river (Berney et al., 2004), as well as extreme environments, including acidic and iron-rich rivers (Amaral Zettler et al., 2002), deep-sea hydrothermal vents (Edgcomb et al., 2002; López-García et al., 2003), microoxic (<10 μM oxygen) and anoxic waters and sediments in salt marshes (Stoeck and Epstein, 2003), permanently anoxic deep-sea waters (Stoeck et al., 2003, 2006), anoxic shallow sediments of marine and freshwater (Dawson and Pace, 2002; Bernhard et al., 2006). These studies have revealed an extraordinary diversity of previously undetected eukaryotic lineages based on small-subunit ribosomal RNA (SSU rRNA) sequences. For a recent overview of higher level classification of eukaryotes that emphasizes the protists, see Adl et al. (2005). Anoxic (lacking dissolved oxygen) environments have been present throughout Earth’s history, and sulfide-rich conditions are likely to have existed in the deep oceans into the late Proterozoic (Canfield, 1998; Shen et al., 2002), during the origin and early diversification of eukaryotes when atmospheric oxygen concentrations were about 1% of present day levels (Schopf and Klein, 1992).


Clone Library Hydrothermal Vent Heterotrophic Flagellate Cold Seep Guaymas Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adl, S.M., Simpson, A.G.B., Farmer, M.A., Andersen, R.A., Anderson, O.R., Barta, J.R., Bowser, S.S., Brugerolle, G., Fensome, R.A., Fredericq, S., James, T.Y., Karpov, S., Kugrens, P., Krug, J., Lane, C.E., Lewis, L.A., Lodge, J., Lynn, D.H., Mann, D.G., McCourt, R.M., Mendoza, L., Moestrup, O., Mozley-Standridge, S.E., Nerad, T.A., Shearer, C.A., Smirnov, A.V., Spiegel, F.W., and Taylor, M.F.J.R. (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52(5):399-451.CrossRefPubMedGoogle Scholar
  2. Admiraal, W., and Peletier, H. (1979) Influence of organic compounds and light limitations on the growth rate of estuarine benthic diatoms. Br. Phycol. J. 14:197-206.CrossRefGoogle Scholar
  3. Amaral Zettler, L.A., Gomez, F., Zettler, E., Keenan, B.G., Amils, R., and Sogin, M.L. (2002) Eukaryotic diversity in Spain’s River of Fire. Nature 417:137.CrossRefPubMedGoogle Scholar
  4. Atkins, M.S., Anderson, O.R., and Wirsen, C.O. (1998) Effect of hydrostatic pressure on the growth rates and encystment of flagellated protozoa isolated from a deep-sea hydrothermal vent and a deep shelf region. Mar. Ecol. Prog. Ser. 171:85-95.CrossRefGoogle Scholar
  5. Atkins, M.S., Teske, A., and Anderson, O.R. (2000) A survey of flagellate diversity at four deep-sea hydrothermal vents in the Eastern Pacific Ocean using structural and molecular approaches. Eukaryot. Microbiol. 47:400-411.CrossRefGoogle Scholar
  6. Atkins, M.S., Hanna, M.A., Kupetsky, E.A., Saito, M.A., Taylor, C.D., and Wirsen, C.O. (2002) Tolerance of flagellated protists to high sulfide and metal concentrations potentially encountered at deep-sea hydrothermal vents. Mar. Ecol. Prog. Ser. 226:63-75.CrossRefGoogle Scholar
  7. Bazylinski, D.A., Farrington, J.W., and Jannasch, H.W. (1988) Hydrocarbons in surface sediments from a Guaymas Basin hydrothermal vent site. Org. Geochem. 12:547-558.CrossRefGoogle Scholar
  8. Baldauf, S.L. (2003) The deep roots of eukaryotes. Science 300:1703-1706.CrossRefPubMedGoogle Scholar
  9. Behnke, A., Bunge, J., Barger, K., Breiner, H.-W., Alla, V., and Stoeck, T. (2006) Microeukaryote com-munity patterns along an O2/H2S gradient in a supersulfidic anoxic fjord (Framvaren, Norway). Appl. Environ. Microbiol. 72:3626-3636.CrossRefPubMedGoogle Scholar
  10. Berney, C., Fahrni, J., and Pawlowski, J. (2004) How many novel eukaryotic kingdoms? Pitfalls and limitations of environmental DNA surveys. BMC Biol. 2:13.CrossRefPubMedGoogle Scholar
  11. Bernhard, J.M. (1993) Experimental and field evidence of Antarctic foraminiferal tolerance to anoxia and hydrogen sulfide. Mar. Micropaleontol. 20:203-213.CrossRefGoogle Scholar
  12. Bernhard, J.M. (2003) Potential symbionts in bathyal foraminifera. Science 299:861.CrossRefPubMedGoogle Scholar
  13. Bernhard, J.M., and Alve, E. (1996) Survival, ATP pool, and ultrastructural characterization of benthic foraminifera from Drammensfjord (Norway): response to anoxia. Mar. Micropaleontol. 28:5-17.CrossRefGoogle Scholar
  14. Bernhard, J.M., and Bowser, S.S. (1999) Benthic foraminifera of dysoxic sediments: chloroplast sequestration and functional morphology. Earth-Sci. Rev. 46:149-165.Google Scholar
  15. Bernhard, J.M., and Buck, K.R. (2004) Eukaryotes of the Cariaco, Soledad, and Santa Barbara Basins: protists and metazoans associated with deep-water marine sulfide-oxidizing microbial mats and their possible effects on the geologic record. In: J.P. Amend, K.J. Edwards, and T.W. Lyons (eds.) Sulfur Biogeochemistry -Past and Present. Geological Society of America, Vol. 379, pp. 35-47.Google Scholar
  16. Bernhard, J.M., Buck, K.R., Farmer, M.A., and Bowser, S.S. (2000) The Santa Barbara Basin is a symbiosis oasis. Nature 403:77-80.CrossRefPubMedGoogle Scholar
  17. Bernhard, J.M., Buck, K.R., and Barry, J.P. (2001) Monterey Bay cold-seep biota: assemblages, abun-dance, and ultrastructure of living foraminifera. Deep-Sea Res. I 48:2233-2249.Google Scholar
  18. Bernhard, J.M., Visscher, P.T., and Bowser, S.S. (2003) Sub-millimeter life positions of bacteria, pro-tists, and metazoans in laminated sediments of the Santa Barbara Basin. Limnol. Oceanogr. 48:813-828.CrossRefGoogle Scholar
  19. Bernhard, J.M., Habura, A., and Bowser, S.S. (2006) An endobiont-bearing allogromiid from the Santa Barbara Basin: Implications for the early diversification of foraminifera. J. Geophys. Res., 111:G03002. doi: 10.1029/2005JG000158.CrossRefGoogle Scholar
  20. Buck, K.R., and Barry, J.P. (1998) Monterey Bay cold seep infauna: quantitative comparison of bac-terial mat meiofauna with non-seep control sites. Proceedings of the First International Symposium on Deep-Sea Hydrothermal Vent Biololgy. 39:333-335.Google Scholar
  21. Buck, K.R., and Bernhard, J.M. (2001) Protistan-prokaryote symbioses in deep-sea sulfidic sedi-ments. In: J. Seckbach (ed.) Symbiosis: Mechanisms and Model Systems. Kluwer Academic Publishers, Boston, pp. 509-517.Google Scholar
  22. Buck, K.R., Barry, J.P., and Simpson, A.G.B. (2000) Monterey Bay cold seep biota: Euglenozoa with chemoautotrophic bacterial epibionts. Eur. J. Protistol. 36:117-126.Google Scholar
  23. Calvert, S.E. (1966) Origin of diatom-rich, varved sediments from the Gulf of California. J. Geol. 74:546-565.CrossRefGoogle Scholar
  24. Canfield, D.E. (1998) A new model for Proterozoic ocean chemistry. Nature 396:450-453.CrossRefGoogle Scholar
  25. Caron, D.A., and Goldman, J.C. (1990) Protozoan nutrient regeneration. In: G.M. Capriulo (ed.) Ecology of Marine Protozoa. Oxford University Press, New York, NY, USA, pp. 283-306.Google Scholar
  26. Cockell, C.S. (1998) Biological effects of high ultraviolet radiation on early Earth - a theoretical eval-uation. J. Theor. Biol. 193:717-729.CrossRefPubMedGoogle Scholar
  27. Cole, J.R., Chai, B., Marsh, T.L., Farris, R.J., Wang, Q., Kulam, S.A., Chandra, S., McGarrell, D.M., Schmidt, T.M., Garrity, G.M., and Tiedje, J.M. (2003) The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res. 31:442-443.CrossRefPubMedGoogle Scholar
  28. Dawson, S.C., and Pace, N.R. (2002) Novel kingdom-level eukaryotic diversity in anoxic environ-ments. Proc. Natl. Acad. Sci. U.S.A. 99:8324-8329.CrossRefPubMedGoogle Scholar
  29. Díez, B., Pedrós-Alió, C., and Massana, R. (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 67:2932-2941.CrossRefPubMedGoogle Scholar
  30. Edgcomb, V.P., Kysela, D.T., Teske, A., de Vera Gomez, A., and Sogin, M.L. (2002) Benthic eukary-otic diversity in the Guaymas Basin hydrothermal vent environment. Proc. Natl. Acad. Sci. U.S.A. 99:7658:62.Google Scholar
  31. Epstein, S.S., Bazylinski, D.A., and Fowle, W. H. (1998) Epibiotic bacteria on several ciliates from marine sediments. J. Eukaryot. Microbiol. 45:64-70.CrossRefGoogle Scholar
  32. Fenchel, T. (1987) Ecology of Protozoa. Springer-Verlag, New York.Google Scholar
  33. Fenchel, T. (1986) The ecology of heterotrophic microflagellates. Adv. Microb. Ecol. 9:57-97.Google Scholar
  34. Fenchel, T., and Bernard, C. (1993a) A purple protist. Nature 362:300.CrossRefGoogle Scholar
  35. Fenchel, T., and Bernard, C. (1993b) Endosymbiotic purple non-sulphur bacteria in an anaerobic cil-iated protozoon. FEMS Microbiol. Lett. 110:21-25.CrossRefGoogle Scholar
  36. Fenchel, T., and Ramsing, N.B. (1992) Identification of sulphate-reducing ectosymbiotic bacteria from anaerobic ciliates using 16S rRNA binding oligonucleotide probes. Arch. Microbiol. 158:394-397.CrossRefPubMedGoogle Scholar
  37. Fenchel, T., and Finlay, B.J. (1995) Ecology and Evolution in Anoxic Worlds. Oxford University Press, Oxford, pp. 276.Google Scholar
  38. Finlay, B.J. (2002) Global dispersal of free-living microbial eukaryote species. Science 296:1061-1063.CrossRefPubMedGoogle Scholar
  39. Finlay, B.J., Corliss, J.O., Esteban, G., and Fenchel, T. (1996) Biodiversity at the microbial level: the number of free-living ciliates in the biosphere. Q. Rev. Biol. 71:221-237.CrossRefGoogle Scholar
  40. Foissner, W. (1999) Protist diversity: estimates of the near-imponderable. Protist 150:363-368.CrossRefPubMedGoogle Scholar
  41. Gray, M.W., Burger, G., and Lang, B.F. (1999) Mitochondrial evolution. Science 283:1476-1481.CrossRefPubMedGoogle Scholar
  42. Grzymski, J., Schofield, O.M., Falkowski, P.G., and Bernhard, J.M. (2002) The function of plastids in the deep-sea benthic foraminifer, Nonionella stella. Limnol. Oceanogr. 47:1569-1580.Google Scholar
  43. Hellebust, J.A., and Lewin, J. (1977) Heterotrophic nutrition. In: D. Werner (ed.) The Biology of Diatoms. Blackwell Publishing, Oxford, pp. 169-197.Google Scholar
  44. Hugenholtz, P., and Huber, T. (2003) Chimeric 16S rDNA sequences of diverse origin are accumulat-ing in the public databases. Int. J. Syst. Evol. Microbiol. 53:289-293.CrossRefGoogle Scholar
  45. Lee, W.J., and Patterson, D.J. (1998) Diversity and geographic distribution of free-living heterotrophic flagellates-analysis by PRIMER. Protist 149:229-243.CrossRefGoogle Scholar
  46. Li, C.-W., and Volcani, B.E. (1987) Four new apochlorotic diatoms. Br. Phycol. J. 22:375-382.CrossRefGoogle Scholar
  47. Lin, H.-L., Peterson, L.C., Overpeck, J.T., Trumbore, S.E., and Murray, D.W. (1997) Late Quaternary climate change from 18O records of multiple species of planktonic foraminifera: high-resolution records from the anoxic Cariaco Basin (Venezuela). Paleoceanography 12:415-427.CrossRefGoogle Scholar
  48. López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C., and Moreira, D. (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603-607.CrossRefPubMedGoogle Scholar
  49. López-García, P., Rodriguez-Valera, F., Pedros-Alio, C., and Moreira, D. (2003) Autochthonous eukaryotic diversity in hydrothermal sediments and experimental microcolonizers at the Mid-Atlantic Ridge. PNAS 100:697-702.CrossRefPubMedGoogle Scholar
  50. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G., Förster, W., Brettske, I., Gerber, S., Ginhart, A.W., Gross, O., Grumann, S., Hermann, S., Jost, R., König, A., Liss, T., Lüßmann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Stamatakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig, T., Bode, A., and Schleifer, K.-H. (2004) ARB: a software environment for sequence data. Nucleic Acids Res. 32:1363-1371.Google Scholar
  51. Martin, W., and Müller, M. (1998) The hydrogen hypothesis for the first eukaryote. Nature 392: 37-41.CrossRefPubMedGoogle Scholar
  52. Massana, R., Guillou, L., Díez, B., and Pedrós-Alió, C. (2002) Unveiling the organisms behind novel eukaryotic ribosomal DNA sequences from the ocean. Appl. Environ. Microbiol. 68:4554-4558.CrossRefPubMedGoogle Scholar
  53. Massana, R., Castresana, J., Balague, V., Guillou, L., Romari, K., Groisillier, A., Valentin, K., and Pedrós-Alió, C. (2004) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl. Environ. Microbiol. 70:3528-3534.CrossRefPubMedGoogle Scholar
  54. Massana, R., Terrado, R., Forn, I., Lovejoy, C., and Pedrós-Alió, C. (2006) Distribution and abun-dance of uncultured heterotrophic flagellates in the worlds oceans. Environ. Microbiol. 1-8.Google Scholar
  55. Moon-van der Staay, S.Y., De Wachter, R., and Vaulot, D. (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607-610.Google Scholar
  56. Moreira, D., and López-García, P. (1998) Symbiosis between methanogenic Archaea and G-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol. 47: 517-530.CrossRefPubMedGoogle Scholar
  57. Moreira, D., and López-García, P. (2002) The molecular ecology of microbial eukaryotes unveils a hidden world. Trends Microbiol. 10(1):31-38.CrossRefPubMedGoogle Scholar
  58. Moreira, D., and López-García, P. (2003) Are hydrothermal vents oases for parasitic protists? Trends Parasitol. 19(12):556-558.CrossRefPubMedGoogle Scholar
  59. Nagahama, T. (2005) Yeast biodiversity in freshwater, marine, and deep-sea environments. In: C. Rosa and G. Peter (eds.) The Yeast Handbook - Volume ‘Biodiversity and Ecophysiology of Yeasts’. Springer, Berlin, Heidelberg, New York, pp. 241-262.Google Scholar
  60. National Research Council (1979) Hydrogen Sulfide. University Park Press, Baltimore, pp. 183.Google Scholar
  61. Nehring, S. (1997) Dinoflagellate resting cysts from recent German coastal sediments. Botanica Marina 40(4):307-324.CrossRefGoogle Scholar
  62. Patterson, D.J. (1993) The current status of thefree-living heterotrophic flagellates. J. Eukaryot. Microbiol. 40:606-609.CrossRefGoogle Scholar
  63. Perkins, F.O. (2000) Class Perkinsasida. In: Lee, J.J., Leedale, G.F., and Bradbury, P. Lawrence (eds.) The Illustrated Guide to the Protozoa (Vol. 1). Society of Protozoologists, Kansas, USA. pp. 200-202.Google Scholar
  64. Pike, J., Bernhard, J.M., Moreton, S.G., and Butler, I.B. (2001) Microbioirrigation of marine sedi-ments in dysoxic environments: implications for early sediment fabric formation and diagenetic processes. Geology 29:923-926.CrossRefGoogle Scholar
  65. Platt, T., and Li, W.K.W. (1986) Photosynthetic picoplankton. Department of Fisheries and Oceans, Ottawa.Google Scholar
  66. Richards, F.A., and Vaccaro, R.F. (1956) The Cariaco Trench, an anaerobic basin in the Caribbean. Deep-Sea Res. 3:214-228.CrossRefGoogle Scholar
  67. Richards, T.A, and Bass, D. (2005) Molecular screening of free-living microbial eukaryotes: diversity and distribution using a meta-analysis. Curr. Opin. Microbiol. 8:240-252.CrossRefPubMedGoogle Scholar
  68. Sagan, C. (1973) Ultraviolet selection pressure on the earliest organisms. J. Theor. Biol. 39:195-200. Schopf, J.W., and Klein, C. (1992) The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, NY.Google Scholar
  69. Searcy, D.G. (1992) Origins of mitochondria and chloroplasts from sulfur-based symbioses. In: A. Hartman and K. Matsuno (eds.) The Origin and Evolution of Prokaryotic and Eukaryotic Cells. World Scientific, River Edge, NJ, pp. 47-78.Google Scholar
  70. Shen, Y., Canfield, D.E., and Knoll, A.H. (2002) Middle Proterozoic ocean chemistry: evidence from the McArthur Basin, Northern Australia. Am. J. Sci. 302:81-109.CrossRefGoogle Scholar
  71. Sherr, E.B., and Sherr, B.F. (2000) Marine microbes. An overview. In: D.L. Kirchman (ed.) Microbial Ecology of the Oceans. Wiley-Liss, New York, NY, USA, pp. 13-46.Google Scholar
  72. Sogin, M.L., Gunderson, J.H., Elwood, H.J., Alonso, R.A., and Peattie, D.A. (1989) Phylogenetic meaning of the kingdom concept: An unusual ribosomal RNA from Giardia lamblia. Science 243:75-77.CrossRefPubMedGoogle Scholar
  73. Stoeck, T., and Epstein, S.S. (2003) Novel eukaryotic lineages inferred from SSU rRNA analyses in oxygen-depleted marine environments. Appl. Environ. Microbiol. 69:2657-2663.CrossRefPubMedGoogle Scholar
  74. Stoeck, T., Taylor, G.T., and Epstein, S.S. (2003) Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea). Appl. Environ. Microbiol. 69:5656-5663.CrossRefPubMedGoogle Scholar
  75. Stoeck, T., Hayward, B., Taylor, G., Varela, R., and Epstein, S.S. (2006) A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist 157:31-43.CrossRefPubMedGoogle Scholar
  76. Takishita, K., Miyake, H., Kawato, M., and Maruyama, T. (2005) Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny. Extremophiles 9:185-196.CrossRefPubMedGoogle Scholar
  77. Takishita, K., Tsuchiya, M., Reimer, J.D., and Maruyama, T. (2006) Molecular evidence demonstrat-ing the basidiomycetous fungus Cryptococcus curvatus is the dominant microbial eukaryote in sediment at the Kuroshima Knoll methane seep. Extremophiles 10:165-169.CrossRefPubMedGoogle Scholar
  78. Taylor, G.T., Scranton, M.I., Iabichella, M., Ho, T.-Y., Thunell, R.C., Muller-Karger, F., and Varela, R. (2001) Chemoautotrophy in the redox transition zone of the Cariaco Basin: a significant mid-water source of organic carbon production. Limnol. Oceanogr. 46:148-163.CrossRefGoogle Scholar
  79. Towe, K.M. (1996) Environmental oxygen conditions during the origin and early evolution of life. Adv. Space Res. 18:7-15.CrossRefGoogle Scholar
  80. van Bruggen, J.J.A., Stumm, C.K., and Vogels, G.D. (1983) Symbiosis of methanogenic bacteria and sapropelic protozoa. Arch. Microbiol. 136:89-96.CrossRefGoogle Scholar
  81. Van Dover, C.L. (1994) Light at deep sea hydrothermal vents. EOS 75(4):44-45.CrossRefGoogle Scholar
  82. van Geen, A., Zheng, Y., Bernhard, J.M., Cannariato, K.G., Carriquiry, J., Dean, W.E., Eakins, B.W., Ortiz, J.D., and Pike, J. (2003) On the preservation on laminated sediments along the western margin of North America. Paleoceanography 18:1098, doi:10.1029/2003PA000911.CrossRefGoogle Scholar
  83. Vannini C., Petroni, G., Shena, A., Verni, F., and Rosati, G. (2003) Well-established mutualistic asso-ciations between ciliates and prokaryotes might be more widespread and diversified than so far supposed. Eur. J. Protistol. 39:481-485.CrossRefGoogle Scholar
  84. Von Damm, K.L., Edmond, J.M., Measures, C.I., and Grant, B. (1985) Chemistry of submarine hydrothermal solutions at 21 degrees N, East Pacific Rise. Geochim. Cosmochim. Acta 49:2221-2237.CrossRefGoogle Scholar
  85. Welhan, J.A. (1988) Origins of methane in hydrothermal systems. Chem. Geol. 71:183-198.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Virginia P. Edgcomb
    • 1
  • Joan M. Bernhard
    • 1
  • Sunok Jeon
    • 2
    • 3
  1. 1.Department of Geology and GeophysicsWoods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.Department of BiologyNortheastern UniversityBostonUSA
  3. 3.Department of Environmental ScienceKangwon National UniversityKangwon-DoKorea

Personalised recommendations