Advertisement

The Fate of Biological Materials in Acidic Environments of the Río Tinto, Southwestern Spain

  • David C. Fernández-Remolar
  • César Menor Salván
  • Marta Ruiz Bermejo
  • Andrew H. Knoll
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

Earth is a planet that records its own history, including aspects of its biological history (Knoll, 2003). The long-term evolution of life is recorded by fossils, molecular biomarkers, biogeochemically informative isotopic abundances, especially of carbon and sulfur, and sedimentary textures that reflect biological activity. One might reasonably expect that other planets have recorded their histories as well, encrypting evidence of past tectonics, climate, atmospheric composition, and, if present, life in the physical and chemical properties of sedimentary rocks. For most of Earth history, the biota was microbial, and it is likely that microbial signatures will be the astrobiological targets of any planetary sediment we will be privileged to examine close at hand.

Keywords

Lower Cambrian Organic Preservation Dimethyl Disulfide Abietic Acid Pelargonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubrey, A., Cleaves, H.J., Chalmers, J.H., Skelley, A.M., Mathies, R.A., Grunthaner, F.J., Ehrenfreund, P., and Bada, J.L. (2006) Sulfate minerals and organic compounds on Mars. Geology 34(5): 357-360.CrossRefGoogle Scholar
  2. Bandfield, J.L., Glotch, T.D., and Christensen, P.R. (2003) Spectroscopic identification of carbonate minerals in the martian dust. Science 301: 1084-1087.CrossRefPubMedGoogle Scholar
  3. Bashkin, V.N. (2002) Modern biogeochemistry, Kluwer Academic Publishers, Dordrecht The Netherlands.Google Scholar
  4. Barghoorn, E.S. and Tyler, S.A. (1965) Microorganisms from the Gunflint chert. Science 147: 563-577.CrossRefPubMedGoogle Scholar
  5. Bonny, S. and Jones, S.B. (2003) Relict tufa at Miette Hot Springs, Jasper National Park, Alberta, Canada. Can. J. Earth Sci. 40: 1459-1481.CrossRefGoogle Scholar
  6. Bridge, T.A.M. and Johnson, D.B. (1998) Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl. Environ. Microbiol. 64: 2181-2186.PubMedGoogle Scholar
  7. Bridges, J.C. and Grady, M.M. (2000) Evaporite mineral assemblages in the nakhlite (martian) mete-orites. Earth Planet Sci. Lett. 176: 267-279.Google Scholar
  8. Kennedy, M., Droser, M., Mayer, L.M., Pevear, D., and Mrofka, D. (2006) Late Precambrian Oxygenation; Inception of the Clay Mineral Factory. Science 311: 1446-1449.CrossRefPubMedGoogle Scholar
  9. Eusterhues, K., Rumpel, C., Kleber, M., and Kogel-Knabner, I. (2003) Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degrada-tion. Org. Geochem. 34: 1591-1600.CrossRefGoogle Scholar
  10. Fernández-Remolar, D.C., Morris, R.V., Gruener, J.E., Amils, R., and Knoll, A.H. (2005a) The Río Tinto Basin, Spain: mineralogy, sedimentary geobiology, and implications for interpretation of outcrop rocks at Meridiani Planum, Mars. Earth Planet Sci. Lett. 240: 149-167.CrossRefGoogle Scholar
  11. Fernández-Remolar, D., Prieto-Ballesteros, O., Rodríguez, N., Dávila, F., Stevens, T.O., Amils, R., Gómez-Elvira, J., and Stoker, C. (2005b) Río Tinto faulted volcanosedimentary deposits as analog habitats for extant subsurface biospheres on Mars: a synthesis of the MARTE drilling project geo-biology results. 36th Lunar and Planetary Science Conference, LPI Contribution 1734, Paper #1360.Google Scholar
  12. Grotzinger, J.P., Bell, J.F., III, Calvin, W., Clark, B.C., Fike, D.A., Golombek, M., Greeley, R., Herkenhoff, K.E., Jolliff, B., Knoll, A.H., Malin, M., McLennan, S.M., Parker, T., Soderblom, L., Sohl-Dickstein, J.N., Squyres, S.W., Tosca, N.J., and Watters, W.A. (2005) Stratigraphy, sedi-mentology and depositional environment of the Burns Formation, Meridiani Planum, Mars. Earth Planet Sci. Lett. 240: 14-75.CrossRefGoogle Scholar
  13. Iverson, R.L., Nearhoof, F.L., and Andreae, M.O. (1989) Production of dimethylsulfonium propionate and dimethylsulfide by phytoplankton in estuarine and coastal waters. Limnol. Oceanogr. 34, 53-67.CrossRefGoogle Scholar
  14. Jones, E.J.P. et al. (2006) Role of microbial iron reduction in the dissolution of iron hydroxysulfate minerals. J. Geophys. Res. 111: G01012, doi:10.1029/2005JG000089.CrossRefGoogle Scholar
  15. Klingelhöfer, G., Morris, R.V., Bernhardt, B., Schröder, C., Rodionov, D.S., de Souza, P.A., Yen, A., Gellert, R., Evlanov, E.N., Zubkov, B., Foh, J., Bonnes, U., Kankeleit, E., Gutlich, P., Ming, D.W., Renz, F., Wdowiak, T., Squyres, S.W., and Arvidson, R.E. (2004) Jarosite and hematite at Meridiani Planum from Opportunity’s Mössbauer spectrometer. Science 306: 1740-1745.CrossRefPubMedGoogle Scholar
  16. Knoll, A.H. (1985) Exceptional preservation of photosynthetic organisms in silicified carbonates and silicified peats. Phil. Trans. Royal Soc., Lond. 311B: 111-122.CrossRefGoogle Scholar
  17. Knoll, A.H. (2003) Life on a Young Planet, Princeton University Press, Princeton NJ, 277 pp.Google Scholar
  18. Knoll, A.H. and Semikhatov, M.A. (1998) The genesis and time distribution of two distinctive Proterozoic stromatolite microstructures. Palaios 13: 407-421.CrossRefGoogle Scholar
  19. Knoll, A.H., Carr, M., Clark, B., Des Marais, D.J., Farmer, J.D., Fischer, W.W., Grotzinger, J.P., McLennan, S.M., Malin, M., Schröder, C., Squyres, S., Tosca, N.J., Wdowiak, T. (2005) An astrobiological perspective on Meridiani Planum. Earth Planet Sci. Lett. 240: 179-189.CrossRefGoogle Scholar
  20. Lazaroff, N., Signal, W., and Wasserman, A. (1982) Iron oxidation and precipitation of ferric hydroxy-sulfates by resting Thiobacillus ferrooxidans. Geomicrobiol. J. 43: 924-938.Google Scholar
  21. Leistel, J.M., Marcoux, E., Thiéblemont, D., Quesada, C., Sánchez, A., Almodóvar, G.R., Pascual, E., and Sáez, R. (1998) The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Mineralium Deposita 33(2): 2-30.CrossRefGoogle Scholar
  22. Malin, M.C. and Edgett, K.S. (2003) Evidence for persistent flow Evidence for persistent flow and aqueous sedimentation on early Mars. Science 302: 1931-1934.CrossRefPubMedGoogle Scholar
  23. McKay, D., Gibson, E.K., Jr., Thomas-Keperta, K.L., Vali, H., Romaneck, C.S., Clemett, S.J., Chillier, X.D.F., Maechling, C.R., and Zare, R.N. (1996) Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273: 924-930.CrossRefPubMedGoogle Scholar
  24. Ming, D.W., Mittlefehldt, D.W., Morris, R.V., Golden, D.C., Gellert, R., Yen, A., Clark, B.C., Squyres, S.W., Farrand, W.H., Ruff, S.W., Arvidson, R.E., Klingelhöfer, G., McSween, H.Y., Rodionov, D.S., Schröder, C., de Souza, P.A., and Wang, A. (2006) Geochemical and mineralog- ical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars. J. Geophys. Res. Planets 111 (E2): Art. No. E02S12.Google Scholar
  25. Stein, W.E., Wight, D.C., and Beck, C.B. (1982) Techniques for preparation of pyrite and limonite permineralizations. Rev. Palaeobot. Palynol. 36, 185-194.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • David C. Fernández-Remolar
    • 1
  • César Menor Salván
    • 1
  • Marta Ruiz Bermejo
    • 1
  • Andrew H. Knoll
    • 2
  1. 1.Centro de AstrobiologíaINTA-CSICSpain
  2. 2.Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA

Personalised recommendations