Diversity and Versatility, Clues to Life in Extreme Environments
  • Lucas J. Stal
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

Bacteria have inhabited Earth for 3.8 billion years and life on our planet was microbial for 3.2 billion years (Schopf, 1994). During this long period, microorganisms have evolved an incredible diversity, although a major part of this diversity may have already existed in the Archean. Cyanobacteria and, hence, oxygenic photosynthesis evolved 2.7–2.2 billion years ago and had therefore ample time to diversify and adapt to newly evolving niches that emerged on Earth (Schopf et al., 2002; Blank, 2004; Tice and Lowe, 2004). Through the advent of oxygenic photosynthesis (Blankenship, 1992), cyanobacteria were responsible for the oxygenation of the Earth’s atmosphere (Buick, 1992), thereby allowing the evolution of plants and animals 0.6 billion years ago and eventually were shaping the present biosphere.

Cyanobacteria combine the fixation of CO2 and N2, the two most important biogeochemical processes on Earth. They are globally important primary producers and contribute greatly to the global nitrogen budget (Karl et al., 2002). Cyanobacteria are essential players in the Earth’s present and past ecosystems. For any understanding of the evolution of life and of the biogeochemical cycles on Earth, knowledge about the ecology and evolution of the cyanobacteria is a prerequisite.

Cyanobacteria colonized successfully almost any illuminated environment on Earth, many of which are considered to be hostile for life. Cyanobacteria play a prominent role in many of these extreme environments. This chapter attempts to find clues explaining the evolutionary and ecological success of cyanobacteria.


Extracellular Polymeric Substance Extreme Environment Glycine Betaine Environmental Microbiology Filamentous Cyanobacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abed, R.M.M., Schönhuber, W., Amann, R. and Garcia-Pichel, F. (2002) Picobenthic cyanobacterial populations revealed by 16S rRNA-targeted in situ hybridization. Environmental Microbiology 4,375-382.CrossRefPubMedGoogle Scholar
  2. Adams, D.G. (2000) Heterocyst formation in cyanobacteria. Current Opinion in Microbiology 3, 618-624.CrossRefPubMedGoogle Scholar
  3. Adams, D.G. and Duggan, P.S. (1999) Heterocystand akinete differentiation in cyanobacteria. New Phytologist 144, 3-33.CrossRefGoogle Scholar
  4. Allewalt, J.P., Bateson, M.M., Revsbech, N.P., Slack, K. and Ward, D.M. (2006) Effect of tempera-ture and light on growth of and photosynthesis by Synechococcus isolates typical of those predominating in the Octopus Spring microbial mat community of Yellowstone National Park. Applied and Environmental Microbiology 72, 544-550.CrossRefPubMedGoogle Scholar
  5. Al-Thukair, A.A. and Golubic, S. (1991) New endolithic cyanobacteria from the Arabian Gulf. 1. Hyella immanis sp. nov. Journal of Phycology 27, 766-780.CrossRefGoogle Scholar
  6. Baas-Becking, L.G.M. (1934) Geobiologie of Inleiding tot de Milieukunde. Van Stockum & Zoon, Den Haag, 263 pp.Google Scholar
  7. Bergman, B., Gallon, J.R., Rai, A.N. and Stal, L.J. (1997) N2 fixation by non-heterocystous cyanobac-teria. FEMS Microbiology Reviews 19, 139-185.Google Scholar
  8. Berman-Frank, I., Lundgren, P., Chen, Y.-B., Küpper, H., Kolber, Z., Bergman, B. and Falkowski, P. (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobac-terium Trichodesmium. Science 294, 1534-1537.CrossRefPubMedGoogle Scholar
  9. Billi, D., Friedman, E.I., Hofer, K.G., Grilli Caiola, M. and Ocampo-Friedmann, R. (2000) Ionization-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis. Applied and Environmental Microbiology 66, 1489-1492.CrossRefPubMedGoogle Scholar
  10. Billi, D. and Potts, M. (2002) Life and death of dried prokaryotes. Research in Microbiology 153, 7-12.CrossRefPubMedGoogle Scholar
  11. Blank, C.E. (2004) Evolutionary timing of the origins of mesophilic sulphate reduction and oxygenic photosynthesis: a phylogenomic dating approach. Geobiology 2, 1-20.CrossRefGoogle Scholar
  12. Blankenship, R.E. (1992) Origin and early evolution of photosynthesis. Photosynthesis Research 33, 91-111.CrossRefPubMedGoogle Scholar
  13. Boles, B.R., Thoendel, M. and Singh, P.K. (2004) Self-generated diversity produces “insurance effects” in biofilm communities. Proceedings of the National Academy of Sciences 101, 16630-16635.CrossRefGoogle Scholar
  14. Brahamsha, B. (1996) An abundant cell-surface polypeptide is required for swimming by the nonfla-gellated marine cyanobacterium Synechococcus. Proceedings of the National Academy of Sciences 93, 6504-6509.CrossRefGoogle Scholar
  15. Bryant, D.A., Glazer, A.N. and Eiserling, F.A. (1976) Characterization and structural properties of the major biliproteins of Anabaena sp. Archives of Microbiology 110, 61-75.CrossRefPubMedGoogle Scholar
  16. Buick, R. (1992) The antiquity of oxygenic photosynthesis - Evidence from stromatolites in sulfate-deficient Archean lakes. Science 255, 74-77.CrossRefPubMedGoogle Scholar
  17. Burger-Wiersma, T., Stal, L.J. and Mur, L.R. (1989) Prochlorothrix hollandica gen. nov., sp. nov., a fil-amentous oxygenic photoautotrophic prokaryote containing chlorophylls a and b: assignment to Prochlorotrichaceae fam. nov. and order Prochlorales Florenzano, Balloni, and Materassi 1986, with emendation of the ordinal description. International Journal of Systematic Bacteriology 39, 250-257.Google Scholar
  18. Chisholm, S.W., Olson, R.J., Zettler, E.R., Goericke, R., Waterbury, J.B. and Welschmeyer, N.A. (1988) A novel free-living Prochlorophyte abundant in the oceanic euphotic zone. Nature 334, 340-343.CrossRefGoogle Scholar
  19. Church, M.J., Short, C.M., Jenkins, B.D., Karl, D.M. and Zehr, J.P. (2005) Temporal patterns of nitrogenase (nifH) gene expression in theoligotrophic North Pacific Ocean. Applied and Environmental Microbiology 71, 5362-5370.CrossRefPubMedGoogle Scholar
  20. Cohen, Y., Jørgensen, B.B., Revsbech, N.P. and Poplawski, R. (1986) Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Applied and Environmental Microbiology 51, 398-407.PubMedGoogle Scholar
  21. Davis, C.S. and McGillicuddy Jr, D.J. (2006) Transatlantic abundance if the N2-fixing colonial cyanobacterium Trichodesmium. Science 312, 1517-1520.CrossRefPubMedGoogle Scholar
  22. Finlay, B.J. (2002) Global dispersal of free-living microbial eukaryote species. Science 296, 1061-1063.CrossRefPubMedGoogle Scholar
  23. Foti, M., Ma, S., Sorokin, D.Y., Rademaker, J.L.W., Kuenen, J.G. and Muyzer, G. (2006) Genetic diversity and biogeography of haloalkaliphilic sulphur-oxidizing bacteria belonging to the genus Thioalkalivibrio. FEMS Microbiology Ecology 56, 95-101.CrossRefPubMedGoogle Scholar
  24. Fredriksson, C. and Bergman, B. (1997) Ultrastructural characterisation of cells specialised for nitro-gen fixation in a non-heterocystous cyanobacterium, Trichodesmium spp. Protoplasma 197, 76-85.CrossRefGoogle Scholar
  25. Gallon, J.R. (1992) Reconciling the incompatible: N2 fixation and O2. New Phytologist 122, 571-609.Google Scholar
  26. Garcia-Pichel, F. and Castenholz, R.W. (1990) Comparative anoxygenic photosynthetic capacity in 7 strains of a thermophilic cyanobacterium. Archives of Microbiology 153, 344-351.CrossRefGoogle Scholar
  27. Garcia-Pichel, F., Nübel, U. and Muyzer, G. (1998) The phylogeny of unicellular, extremely halotol-erant cyanobacteria. Archives of Microbiology 169, 469-482.CrossRefPubMedGoogle Scholar
  28. Garcia-Pichel, F. and Pringault, O. (2001) Cyanobacteria track water in desert soils. Nature 413, 380-381.CrossRefPubMedGoogle Scholar
  29. Garcia-Pichel, F., Prufert-Bebout, L. and Muyzer, G. (1996) Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Applied and Environmental Microbiology 62, 3284-3291.PubMedGoogle Scholar
  30. Gerasimenko, L.M., Mityushina, L.L. and Namsaraev, B.B. (2003) Microcoleus mats from alkaliphilic and halophilic communities. Microbiology 72, 71-79.CrossRefGoogle Scholar
  31. Goericke, R. and Repeta, D.J. (1992) The pigments of Prochlorococcus marinus - The presence of divinyl chlorophyll a and chlorophyll b in a marine prokaryote. Limnology and Oceanography 37,425-433.CrossRefGoogle Scholar
  32. Golden, J.W. and Yoon, H.S. (2003) Heterocyst development in Anabaena. Current Opinion in Microbiology 6, 557-563.CrossRefPubMedGoogle Scholar
  33. Grossman, A.R., Schaefer, M.R., Chiang, G.G. and Collier, J.L. (1993) The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiological Reviews 57, 725-749.PubMedGoogle Scholar
  34. Häder, D.P. (1987) Photosensory behavior in prokaryotes. Microbiological Reviews 51, 1-21.PubMedGoogle Scholar
  35. Hartman, A. (1998) Photosynthesis and the origin of life. Origins of Life and Evolution of the Biosphere 28, 515-521.CrossRefPubMedGoogle Scholar
  36. He, Q., Dolganov, N., Björkman, O. and Grossman, A.R. (2001) The high light-inducible polypep-tides in Synechocystis PCC6803. Expression and function in high light. Journal of Biological Chemistry 276, 306-314.CrossRefPubMedGoogle Scholar
  37. Healey, F.P. (1982) Phosphate. In: N.G. Carr and B.A. Whitton (eds.) The Biology of Cyanobacteria, Blackwell Scientific Publications, Oxford, pp. 105-124.Google Scholar
  38. Hess, W.R., Partensky, F., van der Staay, G.W.M., Garcia-Fernandez, J.M., Börner, T. and Vaulot, D. (1996) Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. Proceedings of the National Academy of Sciences 93, 11126-11130.CrossRefGoogle Scholar
  39. Jaspers, E. and Overmann, J. (2004) Ecological significance of microdiversity: Identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Applied and Environmental Microbiology 70, 4831-4839.CrossRefPubMedGoogle Scholar
  40. Karl, D., Michaels, A., Bergman, B., Capone, D., Carpenter, E., Letelier, R., Lipschultz, F., Paerl, H., Sigman, D. and Stal, L. (2002) Dinitrogen fixation in the world’s oceans. Biogeochemistry 57/58, 47-98.CrossRefGoogle Scholar
  41. Kazmierczak, J. and Kempe, S. (2004) Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia - Discussion. Journal of Sedimentary Research 74, 314-317.CrossRefGoogle Scholar
  42. Kehoe, D.M. and Grossman, A.R. (1996) Similarity of a chromatic adaptation sensor to phytochrome and ethylene receptors. Science 273, 1409-1412.CrossRefPubMedGoogle Scholar
  43. Lewin, R.A. and Withers, N.W. (1975) Extraordinary pigment composition of a prokaryotic alga. Nature 256, 735-737.CrossRefGoogle Scholar
  44. Ley, R.E., Harris, J.K., Wilcox, J., Spear, J.R., Miller, S.R., Bebout, B.M., Maresca, J.A., Bryant, D.A., Sogin, M.L. and Pace, N.R. (2006) Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Applied and Environmental Microbiology 72, 3685-3695.CrossRefPubMedGoogle Scholar
  45. López-López, A., Bartual, S.G., Stal, L., Onyshchenko, O. and Rodríguez-Valera, F. (2005) Genetic analysis of housekeeping genes reveals a deep-sea ecotype of Alteromonas macleodii in the Mediterranean Sea. Environmental Microbiology 7, 649-659.CrossRefPubMedGoogle Scholar
  46. Lukas, K.J. and Golubic, S. (1983) New endolithic cyanophytes from the north Atlantic Ocean. II. Hyella gigas Lukas and Golubic sp. nov. from the Florida continental margin. Journal of Phycology 19, 129-136.CrossRefGoogle Scholar
  47. Mollenhauer, D., Bengtsson, R. and Lindstrøm, E.A. (1999) Macroscopic cyanobacteria of the genus Nostoc: a neglected and endangered constituent of European inland aquatic biodiversity. European Journal of Phycology 34, 349-360.Google Scholar
  48. Montgomery, B.L. and Lagarias, J.C. (2002) Phytochrome ancestry: sensors of bilins and light. Trends in Plant Science 7, 357-366.CrossRefPubMedGoogle Scholar
  49. Moore, D.J., Reed, R.H. and Stewart, W.D.P. (1987) A glycine betaine transport system in Aphanocapsa halophytica and other glycinebetaine-synthesising cyanobacteria. Archives of Microbiology 147, 399-405.CrossRefGoogle Scholar
  50. Mullineaux, C.W. (2001) How do cyanobacteria sense and respond to light? Molecular Microbiology 41,965-971.CrossRefPubMedGoogle Scholar
  51. Ophir, T. and Gutnick, D.L. (1994) A role for exopolysaccharides in the protection of microorganisms from desiccation. Applied and Environmental Microbiology 60, 740-745.PubMedGoogle Scholar
  52. Ortega-Calvo, J.J. and Stal, L.J. (1991) Diazotrophic growth of the unicellular cyanobacterium Gloeothece sp. PCC 6909 in continuous culture. Journal of General Microbiology 137, 1789-1797.Google Scholar
  53. Palenik, B. (2001) Chromatic adaptation in marine Synechococcus strains. Applied and Environmental Microbiology 67, 991-994.CrossRefPubMedGoogle Scholar
  54. Palinska, K.A., Liesack, W., Rhiel, E. and Krumbein, W.E. (1996) Phenotype variability of identical genotypes: the need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia-like isolates. Archives of Microbiology 166, 224-233.CrossRefPubMedGoogle Scholar
  55. Pedrós-Alió, C. (2006) Marine microbial diversity: can it be determined? Trends in Microbiology 14, 257-263.CrossRefPubMedGoogle Scholar
  56. Potts, M. (1994) Desiccation tolerance of prokaryotes. Microbiological Reviews 58, 755-805.PubMedGoogle Scholar
  57. Rippka, R., Waterbury, J. and Cohen-Bazire, G. (1974) A cyanobacterium which lacks thylakoids. Archiv für Mikrobiologie 100, 419-436.Google Scholar
  58. Salem, K. and van Waasbergen, L.G. (2004) Light control of hliA transcription and transcript stabil-ity in the cyanobacterium Synechococcus elongatus strain PCC 7942. Journal of Bacteriology 186,1729-1736.CrossRefPubMedGoogle Scholar
  59. Samsonoff, W.A. and MacColl, R. (2001) Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat. Archives of Microbiology 176, 400-405.CrossRefPubMedGoogle Scholar
  60. Schopf, J.W. (1994) Disparate rates, differing fates: Tempo and mode of evolution changed from the Precambrian to the Phaerozoic. Proceedings of the National Academy of Sciences 91, 6735-6742.CrossRefGoogle Scholar
  61. Schopf, J.W., Kudryavtsev, A.B., Agresti, D.G., Wdowiak, T.J. and Czaja, A.D. (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416, 73-76.CrossRefPubMedGoogle Scholar
  62. Smith, A.J. (1982) Modes of cyanobacterial carbon metabolism. In: N.G. Carr and B.A. Whitton (eds.) The Biology of Cyanobacteria, Blackwell Scientific Publications, Oxford, pp. 47-85.Google Scholar
  63. Staal, M., Meysman, F.J.R. and Stal, L.J. (2003a) Temperature excludes N2-fixing heterocystous cyanobacteria in the tropical oceans. Nature 425, 504-507.CrossRefPubMedGoogle Scholar
  64. Staal, M., Stal, L.J., te Lintel Hekkert, S. and Harren, F.J.M. (2003b) Light action spectra of N2 fix-ation by heterocystous cyanobacteria from the Baltic Sea. Journal of Phycology 39, 668-677.CrossRefGoogle Scholar
  65. Stal, L.J. (1991) The metabolic versatility of the mat-building cyanobacteria Microcoleus chthono-plastes and Oscillatoria limosa and its ecological significance. Algological Studies 64, 453-467.Google Scholar
  66. Stal, L.J. (1992) Poly(hydroxyalkanoate) in cyanobacteria: an overview. FEMS Microbiology Reviews 103,169-180.CrossRefGoogle Scholar
  67. Stal, L.J. (1995) Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytologist 131, 1-32.CrossRefGoogle Scholar
  68. Stal, L.J. (2001) Coastal microbial mats: the physiology of a small-scale ecosystem. South African Journal of Botany 67, 399-410.Google Scholar
  69. Stal, L.J. and Moezelaar, R. (1997) Fermentation in cyanobacteria. FEMS Microbiology Reviews 21, 179-211.CrossRefGoogle Scholar
  70. Staley, J.T. and Gosink, J.J. (1999) Poles apart: biodiversity and biogeography of sea ice bacteria. Annual Review of Microbiology 53, 189-215.CrossRefPubMedGoogle Scholar
  71. Stanier, R.Y. and van Niel, C.B. (1962) The concept of a bacterium. Archiv für Mikrobiologie 42, 17-35.CrossRefPubMedGoogle Scholar
  72. Stomp, M., Huisman, J., de Jongh, F., Veraart, A.J., Gerla, D., Rijkeboer, M., Ibelings, B.W., Wollenzien, U.I.A. and Stal, L.J. (2004) Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432, 104-107.CrossRefPubMedGoogle Scholar
  73. Subramaniam, A., Carpenter, E.J., Karentz, D. and Falkowski, P.G. (1999) Bio-optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. I. Absorption and photosynthesis action spectra. Limnology and Oceanography 44, 608-617.CrossRefGoogle Scholar
  74. Swanson, R.V., Ong, L.J., Wilbanks, S.M. and Glazer, A.N. (1991) Phycoerythrins of marine unicel-lular cyanobacteria. II. Characterization of phycobiliproteins with unusually high phycourobilin content. Journal of Biological Chemistry 266, 9528-9534.PubMedGoogle Scholar
  75. Tandeau de Marsac, N. (1977) Occurrence and nature of chromatic adaptation in cyanobacteria. Journal of Bacteriology 130, 82-91.PubMedGoogle Scholar
  76. Tice, M.M. and Lowe, D.R. (2004) Photosyntheticmicrobial mats in the 3,416-Myr-old ocean. Nature 431,549-552.CrossRefPubMedGoogle Scholar
  77. Walsby, A.E. (1985) The permeability of heterocysts to the gases nitrogen and oxygen. Proceedings of the Royal Society London B 226, 345-366.CrossRefGoogle Scholar
  78. Walsby, A.E. (1994) Gas vesicles. Microbiological Reviews 58, 94-144.Google Scholar
  79. Walsby, A.E., Hayes, P.K., Boje, R. and Stal, L.J. (1997) The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytologist 136, 407-417.CrossRefGoogle Scholar
  80. Ward, D.M., Ferris, M.J., Nold, S.C. and Bateson, M.M. (1998) A natural view of microbial biodi-versity within hot spring cyanobacterial mat communities. Microbiology and Molecular Biology Reviews 62, 1353-1370.PubMedGoogle Scholar
  81. Waterbury, J.B., Willey, J.M., Franks, D.G., Valois, F.W. and Watson, S.W. (1985) A cyanobacterium capable of swimming motility. Science 230, 74-76.CrossRefPubMedGoogle Scholar
  82. Welsh, D.T. (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiology Reviews 24, 263-290.CrossRefPubMedGoogle Scholar
  83. Whitton, B.A. (1987) The biology of Rivulariaceae. In: P. Fay and C. Van Baalen (eds.) The Cyanobacteria, Elsevier Science Publishers, Amsterdam, pp. 513-534.Google Scholar
  84. Wilmotte, A. and Herdman, M. (2001) Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. In: D.R. Boone and R.W Castenholz (eds.) Bergey’s Manual of Systematic Bacteriology, Vol. 1, 487-493.Google Scholar
  85. Wyman, M., Gregory, R.P.F. and Carr, N.G. (1985) Novel role for phycoerythrin in a marine cyanobacterium, Synechococcus strain DC2. Science 230, 818-820.CrossRefPubMedGoogle Scholar
  86. Yachi, S. and Loreau, M. (1999) Biodiversity and ecosystem productivity in a fluctuating environ-ment: the insurance hypothesis. Proceedings of the National Academy of Sciences 96, 1463-1468.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Lucas J. Stal
    • 1
  1. 1.Netherlands Institute of EcologyThe Netherlands

Personalised recommendations