Diversity, Distribution and Ecology of Green Algae and Cyanobacteria in Urban Habitats

  • Fabio Rindi
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

Eukaryotic algae and cyanobacteria occur virtually in every terrestrial habitat on our planet. Organisms belonging to these groups are present even in some of the most extreme terrestrial environments, such as rocks in hot and cold deserts (Friedmann and Ocampo-Friedmann, 1984), Antarctic soils (Broady, 1996) and highly acidic post-mining sites (Lukešová, 2001). As early as the beginning of the nineteenth century, it was realized that microalgae occur also on walls, masonry and other man-made substrata (e.g. Dillwyn, 1809; Agardh, 1824); however, very little attention has been devoted to this type of algal communities until recently. Cities are artificial environments in which artificial substrata (such as concrete, asphalt, glass and metal) provide the largest part of the surfaces available for the colonization of microorganisms. The surfaces of many urban buildings are exposed to full sunlight; organisms growing on such surfaces are therefore frequently subjected to extremely high light irradiance, high levels of UV radiation and extreme dehydration (Crispim and Gaylarde, 2004; Karsten et al., 2005). The temperature of walls and roofs is subjected to a high range of variation and, in tropical regions, can reach 60–70ºC (Tripathi et al., 1990). Most urban habitats are also affected by large amounts of pollutants, such as gases (SO2, CO, NOX, hydrocarbons, ozone), aerosols, dusts and heavy metals (Seaward, 1979; John, 1988). Due to such a negative combination of factors for organisms of aquatic origin, for microalgae and cyanobacteria cities can be certainly considered extreme environments. Reports on algae and cyanobacteria from urban habitats have gradually appeared in the last few decades. Most studies on this subject concern European, Asiatic and South American cities; at present, there is almost no information published for other continents. In general, the knowledge of the diversity and ecology of these communities is still rudimentary, because most studies have focused much more on the biodeterioration operated by these organisms on artificial surfaces than on their biology. In this chapter, the information currently available on cyanobacteria and green algae of urban environments is summarized. General aspects of the diversity and distribution of these organisms in urban habitats are discussed, and the composition and ecology of the most common algal assemblages in these environments are described in detail.


Green Alga Terrestrial Habitat Urban Habitat Algal Assemblage Urban Building 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agardh, C.A. (1824). Systema algarum. Literis Berlingiana, Lund, 312 pp.Google Scholar
  2. Anagnostidis, K., Economou-Amilli, A. and Roussomoustakaki, M. (1983). Epilithic and chas-molithic microflora (Cyanophyta, Bacillariophyta) from marbles of the Parthenon (Acropolis-Athens, Greece). Nova Hedwigia 38: 227-287.Google Scholar
  3. Barkman, J.J. (1958). Phytosociology and Ecology of Cryptogamic Epiphytes. Van Gorcum and Comp. N.V. - G.A. Hak and Dr. H.J. Prakke, Assen, 628 pp.Google Scholar
  4. Bates, J.W., Bell, J.N.B. and Farmer, A.M. (1990). Epiphyte recolonization of oaks along a gradient of air-pollution in South-East England, 1979-1990. Environ. Pollut. 68: 81-99.CrossRefPubMedGoogle Scholar
  5. Bates, J.W., Bell, J.N.B. and Massara, A.C. (2001). Loss of Lecanora conizaeoides and other fluctua-tions of epiphytes on oak in SE England over 21 years with declining SO2 concentrations. Atmos. Environ. 35: 2557-2568.CrossRefGoogle Scholar
  6. Bellinzoni, A.M., Caneva, G. and Ricci, S. (2003). Ecological trends in travertine colonisation by pio-neer algae and plant communities. Int. Biodeter. Biodegr. 51: 203-210.CrossRefGoogle Scholar
  7. Boye Petersen, J. (1928). The aerial algae of Iceland. In: L.K. Rosenvinge and E. Warming (eds.) The Botany of Iceland. Vol. II. Part II. J. Frimodt, Copenhagen, and Wheldon and Wesley, London, pp. 325-447.Google Scholar
  8. Broady, P.A. (1996). Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers. Conserv. 5: 1307-1335.CrossRefGoogle Scholar
  9. Brook, A.J. (1968). The discoloration of roofs in the United States and Canada by algae. J. Phycol. 4: 250.CrossRefGoogle Scholar
  10. Caneva, G., Gori, E. and Danin, A. (1992a). Incident rainfall in Rome and its relation to biodeterio-ration of buildings. Atmos. Environ. 26B: 255-259.Google Scholar
  11. Caneva, G., Nugari, M.P., Ricci, S. and Salvadori O. (1992b). Pitting of marble Roman monuments and the related microflora. In: J.D. Rodrigues, F. Henriques and F.T. Jeremias (eds.) Proceedings of the Seventh International Congress on Deterioration and Conservation of Stone. Laboratorio Nacional de Engenharia Civil, Lisbon, pp. 521-530.Google Scholar
  12. Caneva, G. Danin, A., Ricci, S. and Conti, C. (1994). The pitting of the Trajan’s column, Rome: an ecological model of its origin. In: Conservazione del patrimonio culturale. Contributi del Centro Linceo Interdisciplinare“Beniamino Segre”n.88 Accademia Nazionale dei Lincei, Rome, pp. 77-101.Google Scholar
  13. Caneva, G., Gori, E. and Montefinale, T. (1995). Biodeterioration of monuments in relation to cli-matic changes in Rome between 19-20th centuries. Sci. Total Environ. 167: 205-214.CrossRefGoogle Scholar
  14. Crispim, C.A. and Gaylarde, C.C. (2004). Cyanobacteria and biodeterioration of cultural heritage: a review. Microb. Ecol. 49: 1-9.CrossRefPubMedGoogle Scholar
  15. Crispim, C.A., Gaylarde, P.M. and Gaylarde, C.C. (2003). Algal and cyanobacterial biofilms on cal-careous historic buildings. Curr. Microbiol. 46: 79-82.CrossRefPubMedGoogle Scholar
  16. Crispim, C.A., Gaylarde, C.C. and Gaylarde, P.M. (2004). Biofilms on church walls in Porto Alegre, RS, Brazil, with special attention to cyanobacteria. Int. Biodeter. Biodegr. 54: 121-124.CrossRefGoogle Scholar
  17. Danin, A. and Caneva, G. (1990). Deterioration of limestone walls in Jerusalem and marble monu-ments in Rome caused by cyanobacteria and cyanophilous lichens. Int. Biodeter. 26: 397-417.CrossRefGoogle Scholar
  18. Darienko, T. and Hoffmann, L. (2003). Algal growth on cultural monuments in Ukraine. Biologia, Bratislava 58: 575-587.Google Scholar
  19. Darlington, A. (1981). Ecology of Walls. Heinemann Educational Books, London, 138 pp.Google Scholar
  20. Dillwyn, L.W. (1809). British Confervae or colored figures and descriptions of the British plants referred by botanists to the genus Conferva. W. Phillips, London, 87 pp.Google Scholar
  21. Ettl, H. and Gärtner, G. (1995). Syllabus der Boden-, Luft- und Flechtenalgen. Gustav Fischer Verlag, Stuttgart, Jena and New York, 721 pp.Google Scholar
  22. Flores, M., Lorenzo, J. and Gómez-Alarcón, G. (1997). Algae and bacteria on historic monuments at Alcalá de Henares, Spain. Int. Biodeter. Biodegr. 40: 241-246.CrossRefGoogle Scholar
  23. Friedmann, E.I. and Ocampo-Friedmann (1984). Endolithic microorganisms in extreme dry environ-ments: analysis of a lithobiontic microbial habitat. In: M.J. Klug and C.A. Reddy (eds.) Microbial Ecology. American Society for Microbiology, Washington DC, pp. 177-185.Google Scholar
  24. Fritsch, F.E. and Haines, F.M. (1923). The moisture-relations of terrestrial algae. II. The changes dur-ing exposure to drought and treatment with hypertonic solutions. Ann. Bot. 37: 683-728.Google Scholar
  25. Garcia-Pichel, F., Sherry, N.D. and Castenholz, R.W. (1992). Evidence for ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochem. Photobiol. 56: 17-23.CrossRefPubMedGoogle Scholar
  26. Garcia-Pichel, F., Wingard, C.E. and Castenholz, R.W. (1993). Evidence regarding the UV sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl. Environ. Microbiol. 59: 170-176.PubMedGoogle Scholar
  27. Gärtner, G. (1994). Zur Taxonomie aerophiler grüner Algenflüge an Baumrinden. Ber. Nat.-Med. Verein Innsbruck 81: 51-59.Google Scholar
  28. Gärtner, G. and Stoyneva, M.P. (2003). First study of aerophytic cryptogams on monuments in Bulgaria. Ber. Nat.-Med. Verein Innsbruck 90: 73-82.Google Scholar
  29. Garty, J. (1990). Influence of epilithic microorganisms on the surface temperature of building walls. Can. J. Bot. 68: 1349-1353.CrossRefGoogle Scholar
  30. Gaylarde, P.M. and Gaylarde, C.C. (1999). Algae and cyanobacteria on painted surfaces in southern Brazil. Rev. Microbiol. 30: 209-213.Google Scholar
  31. Gaylarde, P.M. and Gaylarde, C.C. (2000). Algae and cyanobacteria on painted buildings in Latin America. Int. Biodeter. Biodegr. 46: 93-97.CrossRefGoogle Scholar
  32. Gaylarde, C.C. and Gaylarde, P.M. (2005). A comparative study of the major microbial biomass of biofilms on exteriors of buildings in Europe and Latin America. Int. Biodeter. Biodegr. 55: 131-139.CrossRefGoogle Scholar
  33. Gaylarde, C.C. and Morton, L.H.G. (1999). Deteriogenic biofilms on buildings and their control: a review. Biofouling 14: 59-74.CrossRefGoogle Scholar
  34. Gaylarde, C.C., Gaylarde, P.M., Copp, J. and Neilan, B. (2004). Polyphasic detection of cyanobacteria in terrestrial biofilms. Biofouling 20: 71-79.CrossRefPubMedGoogle Scholar
  35. Giaccone, G. and Di Martino, V. (1999). Biologia delle alghe e conservazione dei monumenti. Boll. Acc. Gioenia Sci. Nat. 32: 53-81.Google Scholar
  36. Gilbert, O.L. (1991). The Ecology of Urban Habitats. Chapman and Hall, London, 369 pp.Google Scholar
  37. Golubic, S. (1967). Algenvegetation der Felsen. Eine ökologische Algenstudie im dinarischen Karstgebiet. In: H.J. Elster and W. Ohle (eds.) Die Binnengewässer 23. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, pp. 1-183.Google Scholar
  38. Gómez-Alarcón, G., Muñoz, M., Ariño, X. and Ortega-Calvo, J.J. (1995). Microbial communities in weathered sandstones: the case of Carrascosa del Campo church, Spain. Sci. Total Environ. 167: 249-254.CrossRefGoogle Scholar
  39. Grant, C. (1982). Fouling of terrestrial substrates by algae and implications for control - a review. Int. Biodeter. Bull. 18: 57-65.Google Scholar
  40. Häubner, N., Schumann, R. and Karsten, U. (2006). Aeroterrestrial miroalgae growing in biofilms on facades - response to temperature and water stress. Microb. Ecol. 51: 285-293.CrossRefPubMedGoogle Scholar
  41. Ho, K.K., Tan, K.H. and Wee, Y.C. (1983). Growth conditions of Trentepohlia odorata (Chlorophyta, Ulotrichales). Phycologia 22: 303-308.Google Scholar
  42. Hoffmann, L. (1986). Cyanophycées aériennes et subaériennes du Grand-Duché de Luxembourg. Bull. Jard. Bot. Nat. Belg. 56: 77-127.CrossRefGoogle Scholar
  43. Hoffmann, L. (1989). Algae of terrestrial habitats. Bot. Rev. 55: 77-105.CrossRefGoogle Scholar
  44. Jaag, O. (1945). Untersuchungen über dieVegetation und Biologie der Algen des nackten Gesteins in den Alpen, im Jura und im schweizerischen Mittelland. Beiträge zur Kryptogamenflora der Schweiz, Band IX, Heft 3. Kommissionsverlag Buchdruckerei Büchler and Co., Bern, 560 pp.Google Scholar
  45. John, D.M. (1988). Algal growths on buildings: a general review and methods of treatment. Biodeter. Abstr. 2: 81-102.Google Scholar
  46. John, D.M. (2002). Orders Chaetophorales, Klebsormidiales, Microsporales, Ulotrichales. In: D.M. John, B.A. Whitton and A.J. Brook (eds.) The Freshwater Algal Flora of the British Isles. Cambridge University Press, Cambridge, pp. 433-468.Google Scholar
  47. Joshi, C.D. and Mukundan, U. (1997). Algal disfigurement and degradation of architectural paints in India. Paintindia 47: 27-32.Google Scholar
  48. Kapusta, M and Kovacik, L. (2000). Epilithic phycoflora on the selected anthropogenic objects in Bratislava (Slovakia) (in Slovak). Bull. Slov. Bot. Spolocn. Bratislava 22: 15-22.Google Scholar
  49. Karsten, U., Friedl, T., Schumann, R., Hoyer, K. and Lembcke, S. (2005). Mycosporine-like amino acids and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). J. Phycol. 41: 557-566.CrossRefGoogle Scholar
  50. Kovacik, L. (2000). Cyanobacteria and algae as agents of biodeterioration of stone substrata of his-torical buildings and other cultural monuments. In: S. Choi and M. Suh (eds.) Proceedings of the New Millennium International Forum on Conservation of Cultural Property. Kongju National University, Kongju, pp. 44-58.Google Scholar
  51. Lamenti, G., Tiano, P. and Tomaselli, L. (2000). Biodeterioration of ornamental marble statues in the Boboli Gardens (Florence, Italy). J. Appl. Phycol. 12: 427-433.CrossRefGoogle Scholar
  52. Lee, K.B. and Wee, Y.C. (1982). Algae growing on walls around Singapore. Malay. Nat. J. 35: 125-132.Google Scholar
  53. López-Bautista, J.M., Waters, D.A. and Chapman, R.L. (2002). The Trentepohliales revisited. Constancea 83 (
  54. Lukešová, A. (2001). Soil algae in brown coal and lignite post-mining areas in central Europe (Czech Republic and Germany). Restor. Ecol. 9: 341-350.CrossRefGoogle Scholar
  55. Lüttge, U. (1997). Cyanobacterial tintenstrich communities and their ecology. Naturwissenschaften 84: 526-534.CrossRefGoogle Scholar
  56. Menéndez, J.L. and Rico, J.M. (2001). Rosenvingiella polyrhiza (Rosenv.) P.C. Silva y Prasiola calophylla (Carmich. ex Grev.) Kützing (Prasiolaceae), dos nuevas Prasiolales del NW peninsular. An. Jard. Bot. Madrid 58: 352-354.Google Scholar
  57. Menéndez, J.L., Rindi, F., Rico, J.M. and Guiry, M.D. (2006). The use of CHAID classification trees as an effective descriptor of the distribution of Rosenvingiella radicans (Prasiolales, Chlorophyta) in urban environments. Cryptogamie, Algol. 27: 153-164.Google Scholar
  58. Mikami, K. and Murata, M. (2003). Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog. Lipid Res. 42: 527-543.CrossRefPubMedGoogle Scholar
  59. Morison, M.O. and Sheath, R.G., (1985). Responses to desiccation stress by Klebsormidium rivulare (Ulotrichales, Chlorophyta) from a Rhode Island stream. Phycologia 24: 129-145.Google Scholar
  60. Nienow, J.A. (1996). Ecology of subaerial algae. Nova Hedwigia Beih. 112: 537-552.Google Scholar
  61. Noguerol-Seoane, A. and Rifón-Lastra, A. (1997). Epilithic phycoflora on monuments. A survey of San Esteban de Ribas de Sil monastery (Ourense, NW Spain). Cryptogamie, Algol. 18: 351-361.Google Scholar
  62. Ong, B.L., Lim, M. and Wee, Y.C. (1992). Effects of desiccation and illumination on photosynthesis and pigmentation of an edaphic population of Trentepohlia odorata (Chlorophyta). J. Phycol. 28: 768-772.CrossRefGoogle Scholar
  63. Ortega-Calvo, J.J., Hernández-Mariné, M. and Saiz-Jiménez, C. (1991). Biodeterioration of building materials by cyanobacteria and algae. Int. Biodeter. 28: 165-185.CrossRefGoogle Scholar
  64. Ortega-Calvo, J.J., Hernández-Mariné, M. and Saiz-Jiménez, C. (1993a). Cyanobacteria and algae on historic buildings and monuments. In: K.L. Garg, N. Garg and K.G. Mukerji (eds.) Recent Advances in Biodeterioration and Biodegradation. Naya Prokash, Calcutta, pp. 175-203.Google Scholar
  65. Ortega-Calvo, J.J., Hernández-Mariné, M. and Saiz-Jiménez, C. (1993b). Niches for phototrophic microoganisms in stone monuments. In: R. Guerrero and C. Pedrós-Alió (eds.) Trends in Microbial Ecology. Spanish Society for Microbiology, pp. 673-676.Google Scholar
  66. Ortega-Calvo, J.J., Sanchez-Castillo, P.M., Hernández-Mariné, M. and Saiz-Jiménez, C. (1993c). Isolation and characterization of epilithic chlorophytes and cyanobacteria from two Spanish cathedrals (Salamanca and Toledo). Nova Hedwigia 57: 239-253.Google Scholar
  67. Ortega-Calvo, J.J., Ariño, X., Hernández-Mariné, M. and Saiz-Jiménez, C. (1995). Factors affecting the weathering and colonization of monuments by phototrophic microorganisms. Sci. Total. Environ. 167: 329-341.CrossRefGoogle Scholar
  68. Pisut, I. and Lisicka, E. (2000). Monitoring ofepiphytes on permanent plot in the vicinity of Bratislava (SW Slovakia). Biologia 55: 369-373.Google Scholar
  69. Poli Marchese, E., Luciani, F., Razzara, S., Grillo, M., Auricchia, A., Stagno, F., Giaccone, G., Di Geronimo, R. and Di Martino, V. (1995). Biodeteriorating plants on monuments and stonework in historical city centre of Catania: “Il monastero dei Benedettini”. In: Proceedings of the first International Congress on “Science and technology for the safeguard of cultural heritage in the Mediterranean basin”. University of Catania, Catania, pp. 1195-1203.Google Scholar
  70. Potts, M. (1999). Mechanisms of desiccation tolerance in cyanobacteria. Eur. J. Phycol. 34: 319-328.CrossRefGoogle Scholar
  71. Ricci, S., Pietrini, A.M. and Giuliani, M.R. (1989). A contribution to the knowledge of the algal flora of archaeological remains: the Foro Romano. Braun-Blanquetia 3: 319-320.Google Scholar
  72. Rifón-Lastra, A. and Noguerol-Seoane, Á. (2001). Green algae associated with the granite walls of monuments in Galicia (NW Spain). Cryptogamie, Algol. 22: 305-326.CrossRefGoogle Scholar
  73. Rindi, F. and Guiry, M.D. (2002). Diversity, life history and ecology of Trentepohlia and Printzina (Trentepohliales, Chlorophyta) in urban habitats in western Ireland. J. Phycol. 38: 39-54.CrossRefGoogle Scholar
  74. Rindi, F. and Guiry, M.D. (2003). Composition and distribution of subaerial algal assemblages in Galway City, western Ireland. Cryptogamie, Algol. 24: 245-267.Google Scholar
  75. Rindi, F. and Guiry, M.D. (2004). Composition and spatial variability of terrestrial algal assemblages occurring at the bases of urban walls in Europe. Phycologia 43: 225-235.CrossRefGoogle Scholar
  76. Rindi, F., Guiry, M.D., Barbiero, R.P. and Cinelli, F. (1999). The marine and terrestrial Prasiolales (Chlorophyta) of Galway City, Ireland: a morphological and ecological study. J. Phycol. 35: 469-482.CrossRefGoogle Scholar
  77. Rindi, F. Guiry, M.D., Critchley, A.T. and Ar Gall, E. (2003). The distribution of some species of Trentepohliaceae (Trentepohliales, Chlorophyta) in France. Cryptogamie, Algol. 24: 133-144.Google Scholar
  78. Rindi, F., McIvor, L. and Guiry, M.D. (2004). The Prasiolales (Chlorophyta) of Atlantic Europe: an assessment based on morphological, molecular and ecological data, including the characterization of Rosenvingiella radicans (Kützing) comb. nov. J. Phycol. 40: 977-997.CrossRefGoogle Scholar
  79. Rosas, I., Roy-Ocotla, G., Mosiño, P., Baez, A. and Rivera, L. (1987). Abundance and heterogeneity of algae in the Mexico City atmosphere. Geofis. Int. 26: 359-373.Google Scholar
  80. Roy-Ocotla, G. and Carrera, J. (1993). Aeroalgae: responses to some aerobiological questions. Grana 32: 48-56.CrossRefGoogle Scholar
  81. Saiz-Jimenez, C., Garcia-Rowe, J., Garcia del Cura, M.A., Ortega-Calvo, J.J., Roekens, E. and Van Grieken, R. (1990). Endolithic cyanobacteria in Maastricht limestone. Sci. Total Environ. 94: 209-220.CrossRefGoogle Scholar
  82. Schlichting, H.E. (1975). Some subaerial algae from Ireland. Brit. Phycol. J. 10: 257-261.CrossRefGoogle Scholar
  83. Seaward, M.R.D. (1979). Lower plants and the urban landscape. Urb. Ecol. 4: 217-225.CrossRefGoogle Scholar
  84. Segal, S. (1969). Ecological Notes on Wall Vegetation. W. Junk, The Hague, 325 pp.Google Scholar
  85. Siefermann-Harms, D. (1987). The light-harvesting and protective functions of carotenoids in photo-synthetic membranes. Physiol. Plant. 69: 561-568.CrossRefGoogle Scholar
  86. Sing, l.W. (2002). Product development for green productivity – a case study of the development of algae resistant surface coating for building facades in the human tropics. Second World Conference on Green Productivity:
  87. Stapper, N.J. and Franzen-Reuter, I. (2004). Mapping aerial hypertrophication with epiphytic lichens as biomonitors in North Rhine-Westphalia (NRW, Germany). Engl. Nat. Res. Reports 525: 31-36.Google Scholar
  88. Tanaka, N. and Nakamoto, H. (1999). HtpG is essential for the thermal stress management in cyanobacteria. FEBS Letters 458: 117-123.CrossRefPubMedGoogle Scholar
  89. Tiano, P., Accolla, P. and Tomaselli, L. (1995). Phototrophic bideteriogens on lithoid surfaces: an eco-logical study. Microb. Ecol. 29: 299-309.CrossRefGoogle Scholar
  90. Tomaselli, L., Lamenti, G., Bosco, M. and Tiano, P. (2000). Biodiversity of photosynthetic micro-organisms dwelling on stone monuments. Int. Biodeter. Biodegr. 46: 251-258.CrossRefGoogle Scholar
  91. Tomaselli, L., Margheri, M.C. and Florenzano, G. (1982). Indagine sperimentale sul ruolo dei cianobatteri e delle microalghe nel deterioramento di monumenti e affreschi. In: Proceedings of the Third International Congress on Deterioration and Preservation of Stone. Universitá degli Studi, Istituto di Chimica Industriale, Padova, pp. 313-325.Google Scholar
  92. Tripathi, P., Roy, A. and Adhikary, S.P. (1997). Survey of epilithic blue-green algae (cyanobacteria) from temples of India and Nepal. Algol. Stud. 87: 43-57.Google Scholar
  93. Tripathi, S.N., Tiwari, B.S. and Talpasayi, E.R.S. (1990). Growth of cyanobacteria (blue-green algae) on urban buildings. Energ. Buildings 15: 499-505.CrossRefGoogle Scholar
  94. Turian, G. (1979) Composants de la croûte lichenoïde noire colonisatrice primaire des roches murales. Saussurea 12: 87-100.Google Scholar
  95. Turian, G. (1981). Traînées noires biotiques (Cyanobactéries) et abiotiques (suie) de roches murales en ville de Genève. Saussurea 12: 71-77.Google Scholar
  96. Turian, G. (1985). Colonisation primaire des murs de béton par une Chrysocapsa (Cyanobactérie) à pigment U.V.-protecteur. Saussurea 16: 43-48.Google Scholar
  97. Uher, B., Aboal, M. and Kovacik, L (2004a), Cyanobacteria and algae on monuments and buildings ˇn. Bratislava 10: 77-82.Google Scholar
  98. Uher, B., Aboal, M. and Kovacik, L. (2004b). Primitive coccal cyanobacteria of genus Chroococcidiopsis Geitler as the constantly appearing organisms in extreme urban environments. In: 16th Symposium of the International Association for Cyanophyte Research. Centre de Recherche Public - Gabriel Lippmann, Luxembourg, p. 70.Google Scholar
  99. Uher, B. and Kovacik, L. (2004). Epilithic cyanobacteria and algae in subterranean Mausoleum ˇn. Bratislava 10: 83-86.Google Scholar
  100. Uher, B., Aboal, M. and Kovacik, L. (2005). Epilithic and chasmoendolithic phycoflora of monu-ments and buildings in South-eastern Spain. Cryptogamie, Algol. 26: 275-308.Google Scholar
  101. Verb, R.G. and Vis, M.L. (2001). Macroalgal communities from an acid mine drainage impacter watershed. Aquat. Bot. 71: 93-107.CrossRefGoogle Scholar
  102. Wee, Y.C. and Lee, K.B. (1980). Proliferation ofalgae on surfaces of buildings in Singapore. Int. Biodeter. Bull. 16: 113-117.Google Scholar
  103. Whitton, B.A. (1992). Diversity, ecology and taxonomy of the cyanobacteria. In: N.H. Mann and N.G. Carr (eds.) Photosynthetic Prokaryotes. Plenum Press, New York, pp. 1-51.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Fabio Rindi
    • 1
  1. 1.Department of Biological SciencesThe University of AlabamaTuscaloosaUSA

Personalised recommendations