Advertisement

The Systematics of Subaerial Algae

  • Juan M. Lopez-Bautista
  • Fabio Rindi
  • Dale Casamatta
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

Over the past millions of years the land on our planet has been the testing ground for many experiments or, more dramatically, the battleground for many invasions. A myriad of ancestral plant forms came from the sea and lakes to exploit the terrestrial environment. Those life forms were algae, simple photoautotrophic organisms that eventually prepared the land for the terrestrial flora and fauna that were to follow. They successfully conquered the land in terms of making it a useable new habitat for themselves and developed new forms and processes to adapt. Those plant “invaders” or “conquerors” are represented today by algae living among us populating soils and other terrestrial habitats.

Most of the photosynthetic organisms that occur nowadays in aquatic habitats belong to this heterogeneous category generally called algae. These organisms are phylogenetically unrelated, or only distantly related, and differ enormously in terms of gross morphology, ultrastructure, biochemical traits and many other important features. Several lineages of algae successfully colonized terrestrial environments. Although from the ecological point of view the most important conquest of land was that of the green algae of the streptophytan lineage (those that gave rise to land plants), several other groups did succeed in becoming terrestrial. Representatives of these lineages are presently commonly found in terrestrial environments and unlike land plants, have maintained a very similar morphology to that of their aquatic relatives. The Charophyta and the Chlorophyta sensu stricto are the two groups of eukaryotic algae that along with the prokaryotic Cyanobacteria (blue-green algae) have been most successful in colonizing terrestrial environments.

Keywords

Internal Transcribe Spacer Green Alga Polar Bear Tropical Rainforest Terrestrial Habitat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adl, S.M., Alastair, G., Simpson, B., Farmer, M., Anderden, R., Anderson, R., Barta, J., Bowser, S., Brugerolle, G., Fensome, R., Fredericq, S., James, T., Karpov, S., Kugrens, P., Krug, J., Lane, C., Lewis, L., Lodge, J., Lynn, D., Mann, D., McCourt, R., Mendoza, L., Moestrup, O., Mozley-Standridge, S., Nerad, T., Shearer, C., Smirnov, A., Spiegel, F., Taylor, M. (2005) The new higher level classification of Eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52, 299-451.Google Scholar
  2. Agardh, C.A. (1824) Systema algarum. pp. xxxviii+ 312 Lund, Sweden: Literis Berlingiana.Google Scholar
  3. Anagnostidis, K., Komárek, J. (1985) Modern approach to the classification system of cyanophytes. 1 - Introduction. Arch. Hydrobiol. Suppl. 71, 291-302.Google Scholar
  4. Anagnostidis, K., Komárek, J. (1990) Modern approach to the classification system of cyanophytes. 5. Stigonematales. Arch. Hydrobiol. Suppl. 86, 1-73.Google Scholar
  5. Andersen, R. (1992) Diversity of eukaryotic algae. Biodiver. Cons. 1, 267-292.Google Scholar
  6. Andersen, R. (2004) Biology and systematics of heterokont and haptophyte algae. Am. J. Bot. 91, 1508-1522.Google Scholar
  7. Broady, P.A. (1996) Diversity, distribution and dispersal of Antarctic terrestrial algae. Biodivers. Conserv. 5, 1307-1335.Google Scholar
  8. Brown, R.M., Larson, D.A., Bold, H.C. (1964) Airborne algae: their abundance and heterogeneity. Science 143, 583-585.PubMedGoogle Scholar
  9. Buchheim, M., Buchheim, J., Carlson, T., Braband, A., Hepperle, D., Krienitz, L., Wolf, M., Hegewald, E. (2005) Phylogeny of the Hydrodictyaceae (Chlorophyceae): inferences from rDNA data. J. Phycol. 41, 1039-1054.Google Scholar
  10. Büdel, B. (1999) Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. Eur. J. Phycol. 34, 361-370.Google Scholar
  11. Bulte, E., Van Kooten, G.C. (2000) Economic science, endangered species and biodiversity loss. Conserv. Biol. 14, 113-119.Google Scholar
  12. Burnham, R.J., Johnson, K.R. (2004) South American paleobotany and the origin of neotropical rainforests. Philos. Trans. R. 359, 1595-1610.Google Scholar
  13. Casamatta, D.A., Johansen, J.R., Vis, M.L., Broadwater, S.T. (2005) Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (Cyanobacteria). J. Phycol. 41, 421-438.Google Scholar
  14. Casamatta, D.A., Gomez, S.R., Johansen, J.R. (2006) Rexia erecta gen. et sp. nov. and Capsosira lowei sp. nov., two newly described cyanobacterial taxa from the Great Smoky Mountain National Park (USA). Hydrobiologia 561, 13-26.Google Scholar
  15. Chapman, R.L. (1984) An assessment of the current state of our knowledge of the Trentepohliaceae. In: D.E.G. Irvine and D.M. John (eds.) The Systematics of the Green Algae. The Systematics Association special volume, no. 27, London: Academic Press. pp. 233-250.Google Scholar
  16. Cox, E., Hightower, J. (1972) Some corticolous algae of McMinn County, Tennessee, USA. J. Phycol. 8,203-205.Google Scholar
  17. Cribb, A.B. (1964) Notes on Trentepohlia from Queensland including one growing on a spider. Univ. Qld. Pap. Dept. Bot. 4, 99-108.Google Scholar
  18. Crispin, C.A., Gaylarde, C.C. (2004) Cyanobacteria and biodeterioration of cultural heritage: a review. Microb. Ecol. 49, 1-10.Google Scholar
  19. Del Campo, J., Moreno, J., Rodriguez, J., Vargas, M., Rivas, J., Guerrero, M. (2000) Carotenoid con-tent of chlorophycean microalgae: factors determining lutein accumulation in Muriellopsis sp. (Chlorophyta). J. Biotechnol. 7, 51-59.Google Scholar
  20. Desikachary, T.V. (1959) Cyanophyta. New Delhi: Indian Council of Agricultural Research, 686 pp.Google Scholar
  21. Dillard, G. (1989) Freshwater Algae of the Southeastern United States. Part 2. Chlorophyceae: Ulotrichales, Microsporales, Cylindrocapsales, Sphaeropleales, Chaetophorales, Cladophorales, Schizogoniales, Siphonales and Oedogoniales. Berlin: J. Cramer.Google Scholar
  22. Drouet, F. (1981) Revision of the Stigonemataceae with a summary of the classification of the blue-green algae. Beih. Nova Hedwigia 66, 221.Google Scholar
  23. Ettl, H., Gärtner, G. (1995) Syllabus der Boden-, luft- and flechtenalgen. Jena and New York, GustaV Fischer Verlag, Stuttgart.Google Scholar
  24. Fawley, M.W., Fawley, K.P., Buchheim, M.A. (2004) Molecular diversity among communities of freshwater microchlorophytes. Microb. Ecol. 48, 489-499.PubMedGoogle Scholar
  25. Fearnside, P.M., Laurance, W.F. (2004) Tropical deforestation and greenhouse gas-emissions. Ecol. Appl. 14, 982-986.Google Scholar
  26. Ferris, M.J., Muyzer, G., Ward, D.M. (1996) Enrichment culture and microscopy conceal diverse thermophilic Synechococcus in a single hot spring mat habitat. Appl. Environ. Microbiol. 62, 1045-1050.PubMedGoogle Scholar
  27. Flechtner, V.R., Boyer, S.L., Johansen, J.R., DeNoble, M.L. (2002) Spirirestis rafaelensis gen. et sp. nov. (Cyanophyceae), a new cyanobacterial genus from desert soils. Nova Hedwigia 74, 1-24.Google Scholar
  28. Frémy, P. (1925) Essai sur l’écologie des algues saxicoles, aériennes et subaériennes, en Normandie. Nuova Notarisia 36, 297-304.Google Scholar
  29. Frémy, P. (1930) Les Myxophycées de l’Afrique Equatoriale Française. Archive de Botanique, Mémoires 3, 1-108.Google Scholar
  30. Friedl, T., O’Kelly, C.J. (2002) Phylogenetic relationships of green algae assigned to the genus Planophila(Chlorophyta): evidence from18S rDNA sequence data and ultrastructure. Eur. J. Phycol. 37, 373-384.Google Scholar
  31. Fritsch, F. (1907a) A general consideration of the subaerial and freshwater algal flora of Ceylon. A contribution to the study of tropical algal ecology. Part I. Subaerial algae and algae of the inland freshwaters. Proc. R. Soc. Lond., Ser. B 79, 197-254.Google Scholar
  32. Fritsch, F. (1907b) The subaerial and freshwater algal flora of the tropics. A phytogeographical and ecological study. Ann. Bot. 21, 235-275.Google Scholar
  33. Fritsch, F. (1922) The terrestrial alga. J. Ecol. 10, 220-236.Google Scholar
  34. Funk, V., Berry, P. (2005) The Guiana Shield. In: A. Krupnick and W. Kress (eds.) Plant Conservation, A Natural History Approach. University of Chicago Press, Chicago, USA, pp. 89-92.Google Scholar
  35. Gardner, N.L. (1932) The Myxophyceae of Porto Rico and the Virgin Islands. N. Y. Acad. Sci., Scientific Survey of Porto Rico and the Virgin Islands 8, 249-311.Google Scholar
  36. Gaylarde, P.M., Gaylarde, C.C. (2000) Algae and cyanobacteria on painted buildings in Latin America. Int. Biodeterior. Biodegradation 46, 93-97.Google Scholar
  37. Geitler, L. (1932) Cyanophyceae. In: L. Rabenhorst (ed.) Kryptogammenflora von Deutschland, Osterreich, under de Sweitz. Leipzig: Akademische Verlagsgesellschaft, Vol. 14, pp. 673-1056.Google Scholar
  38. Gerrath, J.F., Gerrath, J.A., Mathhes, U., Larson, D.W. (2000) Endolithic algae and cyanobacteria from cliffs of the Niagara Escarpment, Ontario, Canada. Can. J. Bot. 78, 807-815.Google Scholar
  39. Golubic, S. (1967) Algenvegetation der Felsen. Eine ökologische Algenstudie im dinarischen Karstgebiet. In: H.J. Elster and W. Ohle (eds.) Die Binnengewässer 23. Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung, pp. 1-183.Google Scholar
  40. Gontcharov, A.A., Marin B., Melkonian M. (2003) Molecular phylogeny of conjugating green algae (Zygnemophyceae, Streptophyta), inferred from SSU rDNA sequence comparisons. J. Mol. Evol. 56,89-104.PubMedGoogle Scholar
  41. Gradstein, S., Equihua, C. (1995) An epizoic bryophyte and algae growing on the lizard Corythophanes cristatus in Mexican rain forest. Biotropica 27, 265-268.Google Scholar
  42. Handa, S., Nakano, T. (1988) Some corticolous algae from Miyajima Island, western Japan. Nova Hedwigia 46, 165-186.Google Scholar
  43. Handa, S., Nakahara, M., Tsubota, H., Deguchi, H., Nakano, T. (2003) A new aerial alga, Stichococcus ampulliformis sp. nov., (Trebouxiophyceae, Chlorophyta) from Japan. Phycol. Res. 51,203-210.Google Scholar
  44. Henley, W.J., Hironaka, J.L., Guillou, L., Buchheim, M.A., Buchheim, J.A., Fawley, M.W., Fawley, K.P. (2004) Picochlorum oklahomensis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta). Phycologia 43, 641-652.Google Scholar
  45. Hindák, F. (1976) Marvania geminata gen. nov. et sp. nov., a new green alga. Algol. Stud. 16, 261-270.Google Scholar
  46. Huss, V., Frnck, C., Hartmann, E., Hirmer, M., Kloboucek, A., Seidel, B., Wnzeler, P., Kessler, E. (1999) Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J. Phycol. 35, 587-598.Google Scholar
  47. Hyunsuk, E.O.M., Park, S., Lee, C.G., Jin, E. (2005) Gene expression profiling of eukaryotic microalga, Haematococcus pluvialis. J. Microbiol. Biotechnol. 15, 1060-1066.Google Scholar
  48. Islam, N. (1960) Some subaerial green algaefrom East Pakistan. Trans. Am. Microsc. Soc. 79,471-479.Google Scholar
  49. Jaag, K. (1945) Untersuchungen über die Vegetation und Biologie der Algen des nackten Gesteins in den Alpen, im Jura und im schweizerischen Mittelland. Beiträge zur Kryptogamenflora der Schweiz, Band IX, Heft 3. Bern, Kommissionsverlag Buchdruckerei Büchler and Co., 560 p., 21 pls.Google Scholar
  50. Johansen, J.R., Rushfort, S.R., Orbendorfer, R., Fungladda, N., Grimes, J.A. (1983) The algal flora of selected wet walls in Zion National Park, Utah, USA. Nova Hedwigia 38, 765-808.Google Scholar
  51. Johansen, J.R., Lowe, R., Gomez, S.R., Kociolek, J.P., Makosky, S.A. (2004) New algal records for the Great Smoky Mountains National Park, U.S.A., with an annotated checklist of all reported algal species for the park. Algol. Stud. 111, 17-44.Google Scholar
  52. John, D.M. (1988) Algal growths on buildings: a general review and methods of treatment. Biodeterior. Abstr. 2, 81-102.Google Scholar
  53. John, D.M. (2002) Orders Chaetophorales, Klebsormidiales, Microsporales, Ulotrichales. In: D.M. John, B.A. Whitton and A.J. Brook (eds.)The Freshwater Algal Flora of the British Isles. Cambridge: Cambridge University Press, pp.433-468.Google Scholar
  54. John, D. (2003) Filamentous and plantlike green algae. In: J. Wher and R. Sheath (eds.) Freshwater Algae of North America. Ecology and Classification. San Diego, CA: Academic Press, pp. 311-352.Google Scholar
  55. Karol, K.G., McCourt, R.M., Cimino, M.T., Delwiche, C.F. (2001) The closest living relatives of land plants. Science 294, 2351-2353.PubMedGoogle Scholar
  56. Karsten, U., Friedl, T., Schumann, R., Hoyer, K., Lembcke, S. (2005) Mycosporine-like amino acids and phylogenies in green algae: Prasiolaand its relatives from the Trebouxiophyceae (Chlorophyta). J. Phycol. 41, 557-566.Google Scholar
  57. Kastovska, K., Johansen, J.R., Casamatta, D.A., Xuesong, L., Vincent, J. (2007) Polyphasic charac-terization of heterocystous cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov. Phycologia, in press.Google Scholar
  58. Komárek, J. (1999) Diversity of cyanoprokaryotes (cyanobacteria) of King George Island, maritime Antarctica - a survey. Arch. Hydrobiol. Suppl. 94, 181-193.Google Scholar
  59. Komárek, J. (2003a) Coccoid and colonial cyanobacteria. In: J. Wher and R. Sheath (eds.) Freshwater Algae of North America. Ecology and Classification. San Diego, CA: Academic Press, pp. 59-116.Google Scholar
  60. Komárek, J. (2003b) Planktonic oscillatorialean cyanoprokaryotes (short review according to com-bined phenotype and molecular aspects). Hydrobiologia 502, 367-382.Google Scholar
  61. Komárek, J., Anagnostidis, K. (1989) Modern approach to the classification system of cyanophytes 4- Nostocales. Arch. Hydrobiol. Suppl. 56, 247-345.Google Scholar
  62. Komárek, J., Anagnostidis, K. (1999) Süßwasserflora von Mitteleuropa. Cyanoprokaryota. 1. Teil/1st Part: Chroococcales. Heidelberg, Berlin: Spektrum, Akadademischer, Vol. 19, pp. 548.Google Scholar
  63. Komárek, J., Anagnostidis, K. (2005) Süsswasserflora von Mitteleuropa. Cyanoprokaryota: 2. Teil/2nd Part: Oscillatoriales. München: Elsevier Spektrum Akademischer, Vol. 19, pp.1-759.Google Scholar
  64. Kotake-Nara, E., Kushiro, M., Zhang, H., Sugawara, T., Miyashita, K., Nagao, A. (2001) Carotenoids affect proliferation of human prostate cancer cells. J. Nutr. 131, 3303-3306.PubMedGoogle Scholar
  65. Krienitz, L., Hegewald E., Hepperle D., Wolf A. (2003) The systematics of coccoid green algae: 18S rRNA gene sequence data versus morphology. Biologia 58, 437-446.Google Scholar
  66. Krienitz, L., Hegewald, E.H., Hepperle, D., Huss, V.A.R., Rohr, T., Wolf, M. (2004) Phylogenetic rela-tionship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia 43,529-542.CrossRefGoogle Scholar
  67. Kristiansen, J. (1996) Dispersal of freshwater algae - a review. Hydrobiologia 336, 151-157.Google Scholar
  68. Kützing, F.T. (1849) Species algarum. Leipzig: F.A. Brockhaus, 922 pp.Google Scholar
  69. Lagerheim, G. (1890) Contribuciones a la flora algological del Ecuador. Ann. Univ. Quito 4, 277-283.Google Scholar
  70. Lange, O., Pfanz, H., Kilian, E., Meyer, A. (1990) Effect of low water potential on photosynthesis in intact lichens and their liberated algal components. Planta 182, 467-472.Google Scholar
  71. Laundon, J. (1985) Desmococcus olivaceus - the name of the common subaerial green alga. Taxon 34, 671-672.Google Scholar
  72. Laurence, W.F., Albernaz, A.K.M., Fearnside, P.M., Vasconcelos, H.L. and Ferreira, L.V. (2004) Deforestation in Amazonia. Science 304, 1109-1110.Google Scholar
  73. Lewin, R., Robinson, P. (1979) The greening of polar bears. Nature 278, 445-447.PubMedGoogle Scholar
  74. Lewis, L.A., McCourt, R.M. (2004) Green algae and the origin of land plants. Am. J. Bot. 91, 1535-1556.Google Scholar
  75. Lokhorst, G.M. (1996) Comparative studies on the genus Klebsormidium (Charophyceae) in Europe. Cryptogamic Studies, Vol. 5. Stuttgart, Jena and New York: Gustav Fischer, 132 p.Google Scholar
  76. Lopez-Bautista, J., Chapman, R.L. (2003) Phylogenetic affinities of the Trentepohliales inferred from small-subunit rDNA. Int. J. Syst. Evol. Microbiol. 53, 2009-2106.Google Scholar
  77. Lopez-Bautista, J.M., Waters, D.A., Chapman, R.L. (2002) The Trentepohliales revisited. Constancea 83, http://ucjeps.berkeley.edu/constancea/83/lopezetal/trentepohliales.html
  78. Lopez-Bautista, J.M., Rindi, F., Guiry, M.D. (2006a) Molecular systematics of the subaerial green algal order Trentepohliales: a preliminary assessment based on morphological and molecular data. Int. J. Syst. Evol. Microbiol. 56, 1709-1715.PubMedGoogle Scholar
  79. Lopez-Bautista, J.M., Kapraun, D.F., Chapman, R.L. (2006b) Nuclear DNA content estimates in the Trentepohliales (Chlorophyta): Phylogenetic considerations. Algol. Stud. 120. 41-50.Google Scholar
  80. McCourt, R.M., Karol, K.G., Bell, J., Helm-Bychowski, K.M., Grajewska, A., Wojciechowski, M.F., Hoshaw, R.W. (2000) Phylogeny of the conjugating green algae (Zygnemophyceae) based on rbcL sequences. J. Phycol. 36, 747-758.Google Scholar
  81. Möbius, M. (1888) Uever einige in Portorico gesammelte Süsswasserund Luft-Algen. Hedwigia 9, 221-249.Google Scholar
  82. Nakano, T., Handa, S., Takashita, S. (1991) Some corticolous algae from the Taishaku-Kyo Gorge, western Japan. Nova Hedwigia 52, 427-451.Google Scholar
  83. Neustupa, J. (2003) The genus Phycopeltis (Trentepohliales, Chlorophyta) from tropical Southeast Asia. Nova Hedwigia 76, 487-505.Google Scholar
  84. Neustupa, J. (2005) Investigations on the genus Phycopeltis (Trentepohliaceae, Chlorophyta) from South-East Asia, including the description of two new species. Cryptogam., Algol. 26, 229-242.Google Scholar
  85. Nienow, J.A. (1996) Ecology of subaerial algae. Nova Hedwigia, Beih. 112, 537-552.Google Scholar
  86. Kelly, C.J., Wysor, B., Bellows, W.K. (2004) Gene sequence diversity and the phylogenetic position of algae assigned to the genera Phaeophila and Ochlochaete (Ulvophyceae, Chlorophyta). J. Phycol. 40, 789-799.Google Scholar
  87. Ong, B., Lim, M., Wee, Y. (1992) Effects of desiccation and illumination on photosynthesis and pig-mentation of an edaphic population of Trentepohlia odorata (Chlorophyta). J. Phycol. 28, 768-772.Google Scholar
  88. Ortega-Calvo, J.J., Hernandez-Mariné, M., Saiz-Jimenez, C. (1991) Biodeterioration of building material by cyanobacteria and algae. Int. Biodeterior. Biodegradation 28, 165-185.Google Scholar
  89. Otsuka, S., Suda, S., Li, R.H., Watanabe, M., Oyaizu, H., Matsumoto, S., Watanabe, M.M. (1999) Phylogenetic relationships between toxic and non-toxic strains of the genus Microcystis based on 16S to 23S internal transcribed spacer sequences. FEMS Microbiol. Lett. 172, 15-21.PubMedGoogle Scholar
  90. Printz, H. (1921) Subaerial algae from South Africa. Kongelige Norske Videnskabers Selskabs Skrifter 1920, pp. 41.Google Scholar
  91. Rabenhorst, L. (1868) Flora europea algarum aque dulcis et submarine. Sectio III, Algas chlorophyl-lopyceas, melanophyceas et rhodophyceas complectens. Leipzig: Kummer.Google Scholar
  92. Rajaniemi, P., Hrouzek, P., Kastobska, K., Willame, R., Rantala, A., Hoffmann, L., Komárek, J., Sivonen, K. (2005) Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int. J. Syst. Evol. Microbiol. 55, 11-26.PubMedGoogle Scholar
  93. Raymond, J., Fritsen, C. (2000) Ice-active substances associated with Antarctic freshwater and terres-trial photosynthetic organisms. Antarct. Sci. 12, 418-424.Google Scholar
  94. Rindi, F., Guiry, M.D. (2003) Composition and distribution of subaerial algal assemblages in Galway City, western Ireland. Cryptogam., Algol. 24, 245-267.Google Scholar
  95. Rindi, F., Guiry, M.D. (2004) Composition and spatial variability of terrestrial algal assemblages occurring at the bases of urban walls in Europe. Phycologia 43, 225-235.Google Scholar
  96. Rindi, F., Guiry, M., Critchley, A., Ar Gall, E. (2003) The distribution of some species of Trentepohliaceae (Trentepohliales, Chlorophyta) in France. Cryptogam., Algol. 24, 133-144.Google Scholar
  97. Rindi, F., McIvor, L., Guiry, M.D. (2004) The Prasiolales (Chlorophyta) of Atlantic Europe: an assessment based on morphological, molecular, and ecological data, including the characteriza-tion of Rosenvingiella radicans (Rosenvinge) comb. nov. J. Phycol. 40, 977-997.Google Scholar
  98. Rindi, F., Lopez-Bautista, J.M., Sherwood, A.R., Guiry, M.D. (2006) Morphology and phylogenetic position of Spongiochrysis hawaiiensis gen et sp. nov., the first known terrestrial member of the Cladophorales (Ulvophyceae, Chlorophyta). Int. J. Syst. Evol. Microbiol. 56, 913-922.PubMedGoogle Scholar
  99. Rosas, I., Roy-Ocotla, G., Moseno, P., Baez, A., Rivera, L. (1987) Abundance and heterogenicity of algae in the Mexico City atmosphere. Geofisica Internacional 26, 359-373.Google Scholar
  100. Roy-Ocotla, G., Carrera, J. (1993) Aeoroalgae: responses to some aerobiological questions. Grana 32, 48-56.Google Scholar
  101. Sanderson, I.T. (1963) The Monkey Kingdom, An Introduction to Primates. USA: Chilton Books Publishers, 2nd printing, pp. 200.Google Scholar
  102. Schlichting, H. (1975) Some subaerial algae from Ireland. Br. Phycol. 10, 257-261.Google Scholar
  103. Schlichting, H., Speziale, B., Zink, R. (1978) Dispersal of algae and protozoa by Antarctic flying birds. Antarct. J. US 13, 147-149.Google Scholar
  104. Schmidle, V.W. (1901) Algen aus Brasilien. Hedwigia 40, 45-54.Google Scholar
  105. Schopf, J.W. (1996) Cyanobacteria: Pioneers of the early earth. Nova Hedwigia 112, 13-32.Google Scholar
  106. Siefermann-Harms, D. (1987) The light-harvesting and protective functions of carotenoids in photo-synthetic membranes. Physiol. Plant. 69, 561-568.Google Scholar
  107. Sluiman, H. (1989) The green algal class Ulvophyceae: an ultrastructural survey and classification. Cryptogam. Bot. 1, 83-94.Google Scholar
  108. Suda, S., Watanabe, M.M., Otsuka, S., Mahakahant, A., Yongmanitchai, W., Nopartnaraporn, N., Liu, Y.D., Day, J.G. (2002) Taxonomic revision of water-bloom-forming species of oscillatorioid cyanobacteria. Int. J. Syst. Evol. Microbiol. 52, 1577-1595.PubMedGoogle Scholar
  109. Therezien, Y. (1985) Contribution a l’étude des algues d’eau douce de la Guyane Francaise. Bibl. Phycol. B. 72, Vaduz: J. Cramer, pp. 275.Google Scholar
  110. Thompson, R.H. (1972) Algae from the hair of the sloth Bradypus. J. Phycol. 8(Suppl.), 8.Google Scholar
  111. Thompson, R.H., Wujek, D.E. (1992) Printzina gen nov. (Trentepohliaceae), including a description of a new species. J. Phycol. 28, 232-237.Google Scholar
  112. Thompson, R.H., Wujek, D.E. (1997) Trentepohliales: Cephaleuros, Phycopeltis and Stomatochroon. Morphology, Taxonomy and Ecology. Enfield, New Hampshire: Science Publishers, pp. 149.Google Scholar
  113. Turmel, M., Ehara, M., Otis, C., Lemieux, C. (2002) Phylogenetic relationships among streptophytes as inferred from chloroplast small and large subunit rRNA gene sequences. J. Phycol. 38, 364-375.Google Scholar
  114. Weber Van Bosse, A. (1887) Etude des algues parasites des Paresseux. Verh. Van de Hollandsche Maatsch. D. Weensch. 3-de Verz. Deel V. 1ste Stuk t. I-II.Google Scholar
  115. Wee, Y.C., Lee, K.B. (1980) Proliferation of algae on surfaces of buildings in Singapore. Int. Biodeterior. Bull. 16, 113-117.Google Scholar
  116. Whitton, B., Potts, M. (1982) Marine Littoral. In: N. Carr and B. Whitton (eds.) The Biology of Cyanobacteria. Oxford: Blackwell Scientific Publications, pp. 515-542.Google Scholar
  117. Williams, S.E., Bolitho, E.E., Fox, S. (2003) Climate change in Australian tropical rainforests: an impending environmental catastrophe. Proc. R. Soc. Lond., Ser. B 270, 1887-1892.Google Scholar
  118. Wilmotte, A. (1994) Molecular evolution and taxonomy of the cyanobacteria. In: D.A. Bryant (ed.) The Molecular Biology of Cyanobacteria. Boston: Kluwer Academic Press, pp. 1-25.Google Scholar
  119. Wilmotte, A., Herdman, M. (2001) Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. In: D.R. Boone and R.W. Castenholz (eds.) Bergey’s Manual of Systematic Bacteriology. New York: Springer, 2nd edition, Vol. 1, pp. 487-493.Google Scholar
  120. Wu, L.C., Ho, J.A.A., Shieh, M.C., Lu, I.W. (2005) Antioxidant and antiproliferative activities of Spirulina and Chlorella water extracts. J. Agric. Food Chem. 53, 4207-4212.PubMedGoogle Scholar
  121. Wylie, P., Schlichting, H. (1973) A floristic survey of corticolous subaerial algae in North Carolina. J. Mitchell Soc. 89, 179-183.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Juan M. Lopez-Bautista
    • 1
  • Fabio Rindi
    • 1
  • Dale Casamatta
    • 2
  1. 1.Department of Biological SciencesThe University of AlabamaTuscaloosaUSA
  2. 2.Department of BiologyUniversity of North FloridaJacksonvilleUSA

Personalised recommendations