Aeroterrestrial Algae Growing on Man-Made Surfaces

What are the Secrets of their Ecological Success?
  • Ulf Karsten
  • Rhena Schumann
  • Anika Mostaert
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

Aeroterrestrial phototrophic microorganisms typically form conspicuous biofilms in all climatic zones at the interface between any type of solid substratum and the atmosphere. In temperate regions such as North-Western Europe, eukaryotic green microalgae (Chlorophyta) are the most abundant aeroterrestrial organisms (see also Rindi, this volume), whereas cyanobacteria dominate warm-temperate to tropical regions (Ortega-Calvo et al., 1995; Tomaselli et al., 2000). Aeroterrestrial green microalgae grow epiphytically and epilithically on natural surfaces such as tree bark, soil and rock, and are known to be the photobionts of lichens (Ettl and Gärtner, 1995). These organisms also occur in urban areas on anthropogenic surfaces such as roof tiles, concrete, building facades and other artificial surfaces where they cause aesthetically unacceptable discolouration known as patinas and incrustations (Gaylarde and Morton, 1999; Tomaselli et al., 2000).


Extracellular Polymeric Substance Xanthophyll Cycle Sugar Alcohol Thick Cell Wall Green Microalgae 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arndt, H., Güde, H., Macek, M. and Rothhaupt, K.O. 1992. Chemostats used to model the micro- bial food web: evidence for the feedback effect of herbivorous metazoans. Arch. Hydrobiol. Beih. Ergebn. Limnol. 37: 187-194.Google Scholar
  2. Bamforth, S.S. 2004. Water film fauna of microbiotic crusts of a warm desert. J. Arid Environ. 56: 413-423.CrossRefGoogle Scholar
  3. Barber, J. and Andersson, B. 1992. Too much of a good thing: light can be bad for photosynthesis. Trends Biochem. Sci. 17: 61-66.CrossRefPubMedGoogle Scholar
  4. Baroli, I., Do, A.D., Yamane, T. and Niyogi, K.K. 2003. Zeaxanthin accumulation in the absence of a functional xanthophyll cycle protects Chlamydomonas reinhardtii from photooxidative stress. Plant Cell 15: 992-1008.CrossRefPubMedGoogle Scholar
  5. Bertsch, A. 1966. CO2 Gaswechsel der Grünalge Apatococcus lobatus. Planta (Berlin) 70: 46-72.CrossRefGoogle Scholar
  6. Binnig, G., Quate, C.F. and Gerber, C. 1986. Atomic force microscope. Phys. Rev. Lett. 56: 930-933.CrossRefPubMedGoogle Scholar
  7. Bjerke, J.W., Gwynn-Jones, D. and Callaghan, T.V. 2005. Effects of enhanced UV-B radiation in the field on the concentration of phenolics and chlorophyll fluorescence in two boreal and arctic-alpine lichens. Environ. Exp. Bot. 53: 139-149.CrossRefGoogle Scholar
  8. Brehm, U., Gorbushina, A.A. and Motterhead, D. 2005. The role of microorganisms and biofilms in the breakdown and dissolution of quartz and glass. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219: 117-129.CrossRefGoogle Scholar
  9. Brenowitz, S. and Castenholz, R.W. 1997. Long-term effects of UV and visible irradiance on natural populations of a scytonemin-containing cyanobacterium (Calothrix sp.). FEMS Microbiol. Ecol. 24: 343-352.CrossRefGoogle Scholar
  10. Büdel, B., Karsten, U. and Garcia-Pichel, F. 1997. Ultraviolet-absorbing scytonemin and mycosporine-like amino acid derivatives inexposed, rock-inhabiting cyanobacterial lichens. Oecologia 112: 165-172.CrossRefGoogle Scholar
  11. Casper-Lindley, C. and Björkman, O. 1998. Fluorescence quenching in four unicellular algae with dif-ferent light-harvesting and xanthophyll-cycle pigments. Photosynth. Res. 56: 277-28.CrossRefGoogle Scholar
  12. Cockell, C.S. and Knowland, J. 1999. Ultraviolet radiation screening compounds. Biol. Rev. 74: 311-345.CrossRefPubMedGoogle Scholar
  13. Day, T.A. 2001. Ultraviolet radiation and plant ecosystems. In: C.S. Cockell and R. Blaustein (eds.) Ecosystems, Evolution, and Ultraviolet Radiation. Springer, New York. pp. 80-117.Google Scholar
  14. Demmig-Adams, B. and Adams, W.W. 1996, Xanthophyll cycle and light stress in nature: uniform response to excess direct sunlight among higher plant species. Planta 198: 460-470.CrossRefGoogle Scholar
  15. Dugdale, T.M., Dagastine, R., Chiovitti, A., Mulvaney, P. and Wetherbee, R. 2005. Single adhesive nanofibers from a live diatom have the signature fingerprint of modular proteins. Biophys. J. 89: 4252-4260.CrossRefPubMedGoogle Scholar
  16. Dunlap, W.C. and Shick, J.M. 1998. Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J. Phycol. 34: 418-430.CrossRefGoogle Scholar
  17. Ettl, H. and Gärtner, G. 1995 Syllabus der Boden-, Luft- und Flechtenalgen, Gustav Fischer Verlag, Stuttgart, Germany.Google Scholar
  18. Feige, G. and Kremer, B.P. 1980. Unusualcarbohydrate pattern in Trentepohlia species. Phytochemistry 19: 1844-1845.CrossRefGoogle Scholar
  19. Fletcher, R. and Callow, M.E. 1992. Settlement, attachment and establishment of marine algal spores. Br. Phycol. J. 27: 303-329.CrossRefGoogle Scholar
  20. Fowler, D.M., Koulov, A.V., Alory-Jost, C., Marks, M.S., Balch, W.E. and Kelly, J.W. 2006. Functional amyloid formation within mammalian tissue. PLoS Biol. 4: 100-107.CrossRefGoogle Scholar
  21. Franklin, L.A. and Forster, R.M. 1997. The changing irradiance environment: consequences for marine macrophyte physiology, productivity and ecology. Eur. J. Phycol. 32: 207-232.Google Scholar
  22. Fukuma, T., Mostaert, A.S. and Jarvis, S.P. 2006. Explanation for the mechanical strength of amyloid fibrils. Tribol. Lett. 22(3): (DOI: 10.1007/s11249-006-9086-8).Google Scholar
  23. Garcia-Meza, J.V., Barranguet, C. and Admiraal, W. 2005. Biofilm formation by algae as a mecha-nism for surviving on mine tailings. Environ. Toxicol. Chem. 24: 573-581.CrossRefPubMedGoogle Scholar
  24. Garcia-Pichel, F. and Castenholz, R.W. 1991. Characterization and biological implications of scy-tonemin, a cyanobacterial sheath pigment. J. Phycol. 27: 495-409.CrossRefGoogle Scholar
  25. Garcia-Pichel, F. and Castenholz, R.W. 1993. Occurrence of UV-absorbing, mycosporine-like com-pounds among cyanobacterial isolates and an estimate of their screening capacity. Appl. Environ. Microbiol. 59: 163-169.PubMedGoogle Scholar
  26. Gaylarde, C.C. and Morton, L.H.G. 1999. Deteriogenic biofilms on buildings and their control: a review. Biolfouling 14: 59-74.CrossRefGoogle Scholar
  27. Gilmore, A.M. and Yamamoto, H.Y. 1991. Zeaxanthin formation and energy dependent fluorescence quenching in pea chloroplasts under artificially mediated linear and cyclic electron transport. Plant Physiol. 96: 635-643.CrossRefPubMedGoogle Scholar
  28. Gorbushina, A.A. and Krumbein, W.E. 2005. Role of organisms in wear down of rocks and miner-als. In: F. Buscot and A. Varma (eds.) Microorganisms in Soils: Roles in Genesis and Functions. Springer, New York. pp. 59-84.CrossRefGoogle Scholar
  29. Gröninger, A. and Häder, D.P. 2002. Induction of the synthesis of an UV-absorbing substance in the green alga Prasiola stipitata. J. Photochem. Photobiol. B: Biol. 66: 54-59.CrossRefGoogle Scholar
  30. Häubner, N., Schumann, R. and Karsten, U. 2006. Aeroterrestrial algae growing on facades -response to temperature and water stress. Microb. Ecol. 51: 285-293.CrossRefPubMedGoogle Scholar
  31. Hoyer, K., Karsten, U., Sawall, T. and Wiencke, C. 2001. Photoprotective substances in Antarctic macroalgae and their variation with respect to depth distribution, different tissues and developmental stages. Mar. Ecol. Prog. Ser. 211: 117-129.CrossRefGoogle Scholar
  32. Iturriaga, R., Mitchell, B.G. and Kiefer, D.A. 1988. Microphotometric analysis of individual particle absorption spectra. Limnol. Oceanogr. 33: 128-135.CrossRefGoogle Scholar
  33. Karsten, U., Friedl, T., Schumann, R., Hoyer, K. and Lembcke, S. 2005. Mycosporine like amino acids (MAAs) and phylogenies in green algae: Prasiola and its relatives from the Trebouxiophyceae (Chlorophyta). J. Phycol. 41: 557-566.CrossRefGoogle Scholar
  34. Kogej, T., Gostincar, C., Volkmann, M., Gorbushina, A. and Gunde-Cimerman, N. 2006. Mycosporines in extremophilic fungi - novel complementary osmolytes? Environ. Chem. 3: 105-110.CrossRefGoogle Scholar
  35. Kühl, M., Glud, R.N., Ploug, H. and Ramsing, N.B. 1996. Microenvironmental control of photosyn-thesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J. Phycol. 32: 799-812.CrossRefGoogle Scholar
  36. Lange, O.L., Bilger, W. and Schreiber, U. 1989. Chlorophyll fluorescence of lichens containing green and blue-green algae during hydration by water vapor uptake and by addition of liquid water. Bot. Acta 102: 306-313.Google Scholar
  37. Lange, O.L., Belnap, J., Reichenberger, H. and Meyer, A. 1997. Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: role of water content on light and temper-ature responses of CO2 exchange. Flora 192: 1-15.Google Scholar
  38. ´, J., Bernardini, P., Sacchi, A. and Komenda J. 1999. Photoadaptation of two members of the Chlorophyta (Scenedesmus and Chlorella) in laboratory and outdoor cultures: changes in chlorophyll fluorescence quenching and the xanthophyll cycle. Planta 209: 126-135.Google Scholar
  39. Matthes, U., Turner, S.J. and Larson, D.W. 2001. Light attenuation by limestone rock and its con-straint on the depth distribution of endolithic algae and cyanobacteria. Int. J. Plant Sci. 162: 263-270.CrossRefGoogle Scholar
  40. May, E., Lewis, F.J., Pereira, S., Tayler, S., Seaward, M.R.D. and Allsopp, D. 1993. Microbial deteri-oration of building stone - a review. Biodeterior. Abstr. 7: 109-123.Google Scholar
  41. Mostaert, A.S., Higgins, M.J., Fukuma, T., Rindi, F. and Jarvis, S.P. 2006. Nanoscale mechanical characterisation of amyloid fibrils discovered in a natural adhesive. J. Biol. Phys. (DOI: 10.1007/s10867-006-9023-y).Google Scholar
  42. Nay, M. 2003. Algen und Pilze an Fassaden- Forschung an der EMPA St. Gallen. Altbauinstandsetzung 5/6: 119-128.Google Scholar
  43. Niyogi, K.K., Björkman, O. and Grossman, A.R. 1997. The roles of specific xanthophylls in photo-protection. Proc. Natl. Acad. Sci. U.S.A. 94: 14162-14167.CrossRefPubMedGoogle Scholar
  44. Oren, A. 2007. Diversity of Organic Osmotic Compounds and Osmotic Adaptation in Cyanobacteria and Algae. In: J. Seckbach (ed.) Algae and Cyanobacteria in Extreme Environments, Springer, Dordrecht (in press).Google Scholar
  45. Oren, A., Kühl, M. and Karsten, U. 1995. An endoevaporitic microbial mat within a gypsum crust: zona-tion of phototrophs, photopigments, and light penetration. Mar. Ecol. Prog. Ser. 128: 151-159.CrossRefGoogle Scholar
  46. Ortega-Calvo, J.J., Arino, X., Hernandez-Marine, M. and Saiz-Jimenez, C. 1995. Factors affecting the weathering and colonisation of monuments by phototrophic microorganisms. Sci. Tot. Environ. 167: 329-341.CrossRefGoogle Scholar
  47. Palmer R.J. Jr., and Friedmann, I.E. 1990. Water relations and photosynthesis in the cryptoendolithic microbial habitat of hot and cold deserts. Microb. Ecol. 19: 111-118.CrossRefPubMedGoogle Scholar
  48. Pattanaik, B., Schumann, R. and Karsten, U. 2007. Effects of Ultraviolet Radiation on Cyanobacteria and their Protective Mechanisms. In: J. Seckbach (ed.) Algae and Cyanobacteria in Extreme Environments, Springer, Dordrecht (in press).Google Scholar
  49. Reisser, W. and Houben, P. 2001. Different strategies of aeroterrestrial algae in reacting to increased levels of UV-B and ozone. Nova Hedwigia 123: 291-296.Google Scholar
  50. Rindi, F. 2007. Diversity, Distribution and Ecology of Green Algae and Cyanobacteria in Urban Habitats. In: J. Seckbach (ed.) Algae and Cyanobacteria in Extreme Environments, Springer, Dordrecht (in press).Google Scholar
  51. Rindi, F. and Guiry, M.D. 2004. Composition and spatial variability of terrestrial algal assemblages occurring at the bases of urban walls in Europe. Phycologia 43: 225-235.Google Scholar
  52. Schumann, R., Eixler, S. and Karsten, U. 2004. Fassadenbesiedelnde Mikroalgen. In: E. Cziesielski (ed.) Bauphysikkalender 2004. Ernst und Sohn Verlag Berlin. pp. 561-584.Google Scholar
  53. Smith, B.L., Schäffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A., Stucky, G.D., Morse, D.E. and Hansma, P.K. 1999. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399: 761-763.CrossRefGoogle Scholar
  54. Stal, L.J. 2003. Microphytobenthos, their extracellular polymeric substances, and the morphogenesis of intertidal sediments. Geomicrobiol. J. 20: 463-478.CrossRefGoogle Scholar
  55. Thompson, A.J. and Sinsabaugh, R.L. 2000. Matric and particulate phosphatase and aminopeptidase activity in limnetic biofilms. Aquat. Microb. Ecol. 21: 151-159.CrossRefGoogle Scholar
  56. Tomaselli, L., Lamenti, G., Bosco, M. and Tiano, P. 2000. Biodiversity of photosynthetic microor-ganisms dwelling on stone monuments. Int. Biodeterior. Biodegrad. 46: 251-258.CrossRefGoogle Scholar
  57. Tormo, R., Recio, D., Silva, I. and Munoz, A.F. 2001. A quantitative investigation of airborne algae and lichen soredia obtained from pollen traps in south-west Spain. Eur. J. Phycol. 36: 385-390.CrossRefGoogle Scholar
  58. Vass, I. 1997. Adverse effects of UV-B light on the structure and function of the photosynthetic appa-ratus. In: M. Pessaraki (ed.) Handbook of Photosynthesis. Marcel Dekker Inc., New York. pp. 931-949.Google Scholar
  59. Volkmann, M. and Gorbushina, A.A. 2006. A broadly applicable method for extraction and charac-terization of mycosporines and mycosporine-like amino acids of terrestrial, marine and freshwater origin. FEMS Microbiol. Lett. 255: 286-295.Google Scholar
  60. Wright, R.F., Alewell, C., Cullen, J.M., Evans, C.D., Marchetto, A., Moldan, F., Prechtel, A. and Rogora, M. 2001. Trends in nitrogen deposition and leaching in acid-sensitive streams in Europe. Hydrol. Earth Syst. Sci. 5: 299-310.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Ulf Karsten
    • 1
  • Rhena Schumann
    • 1
  • Anika Mostaert
    • 2
  1. 1.Institute of Biological Sciences, Applied EcologyUniversity of RostockGermany
  2. 2.Centre for Research on Adaptive Nanodevices and NanostructuresTrinity CollegeIreland

Personalised recommendations