The term “algae” designates a most diverse and ancient group of organisms that is polyphyletic by evolution and artificial by taxonomy. Its only common feature is the ability to perform aerobic photosynthesis. Algae range by size from tiny cyanobacterial cells of the picoplankton to the giant kelps dominating rocky coastlines. They settle most diverse aquatic habitats such as hot springs and Arctic ice, live on and in rocks and various organisms, travel by air currents for thousands of miles and can be found in groundwater. Algae have taken an important part in the evolution of Gaia and gave rise to embryophytes (plants: bryophytes and spermatophytes).

In most textbooks, it is common wisdom that the success of algae is dependent on sufficient light available for net photosynthesis. However, there exists another world, hidden and without light, offering a plethora of aphotic habitats. That is the world underground, which is not only settled by bacteria, fungi and the terrestrial fauna, but also by algae.

The following is meant to give an introduction into what we know and suggest on the life of algae underground, that is on algae not living, as crust forming algae do, on but in soil substrates. The leitmotiv shall be to look for lessons they can tell us about the tremendous potential of life to adapt to habitats, that – at first glance – appear to be rather hostile and strange. For practical reasons all kinds of both pro- and eukaryotic algae living on and within soil substrates will be designated as “soil algae.”


Algal Cell Micrococcus Luteus Total Microbial Biomass Soil Alga Giant Kelp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, D., Mazurak, A. P. and Rosowski, J. R. (1973). Aggregation of soil particles by algae. J. Phycol. 9,99-101.Google Scholar
  2. Bell, R. A., Athey, P. V. and Sommerfeld, M. R. (1986). Cryptoendolithic algal communities of the Colorado Plateau. J. Phycol. 22, 429-435.CrossRefGoogle Scholar
  3. Bold, H. C. (1942). The cultivation of algae. Bot. Rev. 8, 69-138.CrossRefGoogle Scholar
  4. Bristol Roach, R. M. (1926). On the relation of certain soil algae to some soluble carbon compounds. Ann. Bot. 40, 149-201.Google Scholar
  5. Bristol Roach, R. M. (1927). On the carbon nutrition of some algae isolated from soil. Ann. Bot. 41, 509-517.Google Scholar
  6. Bristol Roach, R. M. (1928). On the influence of light and of glucose on the growth of soil algae. Ann. Bot. 42, 317-345.Google Scholar
  7. Broady, P. A. (1979). Wind dispersal of terrestrial algae at Signy Island, South Orkney Islands. Br. Antarct. Surv. Bull. 48, 99-102.Google Scholar
  8. Buzer, J. S., Dohmeier, R. A. and Du Toit, D. R. (1985). The survival of algae in dry soils exposed to high temperatures for extended time periods. Phycologia 24, 249-251.Google Scholar
  9. Davey, M. C. and Clark, K. J. (1991). The spatial distribution of microalgae on Antarctic fellfield soils. Antarctic Science 3, 257-263.CrossRefGoogle Scholar
  10. Davidson, E. A. and Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165-173.CrossRefPubMedGoogle Scholar
  11. de Caire, G., Storni de Cano, M., Zaccaro der Mulé, M. C., Palma, R. M. and Colombo, K. (1997). Exopolysaccharides of Nostoc muscorum (Cyanobacteria) in the aggregation of soil particles. J. Appl. Phycol. 9, 249-253.CrossRefGoogle Scholar
  12. Ettl, H. and Gärtner, G. (1995). Syllabus der Boden-, Luft-und Flechtenalgen. Gustav Fischer Verlag, Stuttgart.Google Scholar
  13. Friedmann, I. E. (1980). Endolithic microbial life in hot and cold deserts. Orig. Life 10, 223-235.CrossRefPubMedGoogle Scholar
  14. Hu, C., Liu, Y., Song, L. and Zhang, D. (2002). Effect of desert soil algae on the stabilization of fine sands. J. Appl. Phycol. 14, 281-292.CrossRefGoogle Scholar
  15. Hunt, M. E., Floyd, G. L. and Stout, B. B. (1979). Soil algae in field and forest environments. Ecology 80,362-375.CrossRefGoogle Scholar
  16. Kirst, G. O. (1989). Salinity tolerance of eukaryotic marine algae. Ann. Rev. Plant Physiol. Plant Mol. Biol. 40, 21-53.Google Scholar
  17. Knorr, W., Prentice, I. G., House, J. I. and Holland, E. A. (2005). Long-term sensitivity of soil carbon turnover to warming. Nature 433, 298-301.CrossRefPubMedGoogle Scholar
  18. Lukesová, A. and Hoffmann, L. (1996). Soil algae from acid rain impacted forest areas of the Krusne hory mts. 1. Algal communities. Vegetatio 125, 123-126.CrossRefGoogle Scholar
  19. Lukesová, A. and Tajovsky, K. (1999). Interactions between soil alga and saprophagous invertebrates (Diplopoda and Oniscidia). In: K. Tajovsky and V. Pizl (eds.) Soil zoology in Central Europe, ISB ASCR, Ceské Budejovice, pp. 187-195.Google Scholar
  20. Metting, B. (1981). Systematics and ecology of soil algae. Bot. Rev. 47, 195-312.CrossRefGoogle Scholar
  21. Oesterreicher, W. (1990). Ökologische Bedeutung der Algen im Boden. Nachrichtenbl. Deut. Pflanzenschutzd. 42, 122-126.Google Scholar
  22. Parker, B. C. (1961). Facultative heterotrophy incertain soil algae from the ecological viewpoint. Ecology 42, 381-386.CrossRefGoogle Scholar
  23. Paulsen, B. S., Vieira, A. A. H. and Klaveness, D. (1992). Structure of extracellular polysaccharides produced by a soil Cryptomonas sp. (Cryptophyceae). J. Phycol. 28, 61-63.CrossRefGoogle Scholar
  24. Ramsay, A. J. and Ball, K. T. (1983). Estimation of algae in New Zealand pasture soil and litter by culturing and by chlorophyll a extraction. N. Z. J. Sci. 26, 493-503.Google Scholar
  25. Safonova, E. and Reisser, W. (2005). Growth promoting and inhibiting effects of extracellular sub-stances of soil microalgae and cyanobacteria on Escherichia coli and Micrococcus luteus. Phycol. Res. 53, 189-193.Google Scholar
  26. Stina, E. A. (1969). Über die Verbreitung und ökologische Bedeutung der Algen in Ackerböden. Pedobiologia 9, 226-224.Google Scholar
  27. Shimmel, S. M. and Darley, W. M. (1985). Productivity and density of soil algae in an agricultural system. Ecology 66, 1439-1447.CrossRefGoogle Scholar
  28. Starks, T. L., Shubert, L. E. and Trainor, F. R. (1981). Ecology of soil algae: a review. Phycologia 20, 65-80.Google Scholar
  29. Trainor, F. R. (1970). Survival of algae in a desiccated soil. Phycologia 9, 111-113.Google Scholar
  30. Trainor, F. R. (1983). Survival of algae in soil after high temperature treatment. Phycologia 22, 201-202.Google Scholar
  31. Trainor, F. R. (1985). Survival of algae in a desiccated soil: a 25 year study. Phycologia 24, 79-82.Google Scholar
  32. Vishnivetskaya, T. A., Spirina, E. V., Shatilovich, A. V., Erokhina, L. G., Vorobyova, E. A. and Gilichinsky, D. A. (2003). The resistance of viable permafrost algae to simulated environmental stresses: implications for astrobiology. Intern. J. Astrobiol. 2, 171-177.CrossRefGoogle Scholar
  33. Wöhler, I. O., Mensching, A. and Reisser, W. (1999). Algae in forest soils: Taxonomic affiliation and distribution, In: N. Rastin and J. Bauhus (eds.) Going underground - ecological studies in forest soils, Research Signpost, Trivandrum, pp. 187-200.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Werner Reisser
    • 1
  1. 1.Institute of Biology I, General and Applied BotanyUniversity of LeipzigGermany

Personalised recommendations