Advertisement

Enigmatic Archaeal and Eukaryotic Life at Hydrothermal Vents and in Marine Subsurface Sediments

  • Andreas Teske
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

This chapter is intended as a brief introduction on specific, novel aspects of archaeal and eukaryotic biodiversity in two extreme marine environments, hydrothermal vents and deep subsurface sediments: deeply-branching, uncultured archaea occurring in both environments that in some cases do not fit into the well-established crenarchaeota-euryarchaeota dichotomy; the partial overlap in the archaeal community structure of hydrothermal vents and deep subsurface sediments; new developments to decode the physiology and carbon sources of subsurface and vent archaea; and the unexpected diversity of enigmatic protists at hydrothermal vents.

Keywords

Hydrothermal Vent Subsurface Sediment Heterotrophic Flagellate Anaerobic Methane Oxidation Guaymas Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt, J.C. (1995) Subseafloor processes in mid-ocean ridge hydrothermal systems. In: S.E. Humphris, R.A. Zierenberg, L.S. Mullineaux, and R.E. Thomson (eds.) Seafloor Hydrothermal Systems: Physical, Chemical, Biological and Geological Interactions. Geophysical Monograph 91, American Geophysical Union, Washington DC, pp. 85-114.Google Scholar
  2. Atkins, M.S., Anderson, O.R., and Wirsen, C.O. (1998) Effect of hydrostatic pressure on the growth rates and encystment of flagellated protozoa isolated from a deep-sea hydrothermal vent and a deep shelf region. Mar. Ecol. Prog. Ser. 171, 85-95.CrossRefGoogle Scholar
  3. Atkins, M.S., Teske, A.P., and Anderson, R.O. (2000) A survey of flagellate diversity at four deep-sea hydrothermal vents in the Eastern Pacific Ocean using structural and molecular approaches. J. Eukaryot. Microbiol. 47, 400-411.CrossRefPubMedGoogle Scholar
  4. Azam, F. (1998) Microbial control of oceanic carbon flux: the plot thickens. Science 280, 694-696.CrossRefGoogle Scholar
  5. Barns, S.M., Delwiche, C.F., Palmer J.D., and Pace, N.R. (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc. Natl. Acad. Sci. U.S.A. 93,9188-9193.CrossRefPubMedGoogle Scholar
  6. Berney, C., Fahrni, J., and Pawlowski, J. (2004) How many novel eukaryotic “kingdoms”? Pitfalls and limitations of environmental DNA surveys. BMC Biol. 2, 13.CrossRefPubMedGoogle Scholar
  7. Biddle, J.F., Lipp, J.S., Lever, M.A., Lloyd, K.G., Sørensen, K.B., Anderson, R., Fredricks, H.F., Elvert, M., Kelly, T.J., Schrag, D.P., Sogin, M.L., Brenchley, J.E., Teske, A., House, C.H., and Hinrichs, K.-U. (2006) Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proc. Natl. Acad. Sci. U.S.A. 103, 3846-3851.CrossRefPubMedGoogle Scholar
  8. Chandler, D.P., Brockman, F.J., Bailey, T.J., and Fredrickson, J.K. (1998) Phylogenetic diversity of archaea and bacteria in a deep subsurface palaeosol. Microb. Ecol. 36, 37-50.CrossRefPubMedGoogle Scholar
  9. Coolen, M.J.L., Cypionka, H., Sass, A.M., Sass, H., and Overmann, J. (2002) Ongoing modification of Mediterranean Pleistocene sapropels mediated by prokaryotes. Science 296, 2407-2410.CrossRefPubMedGoogle Scholar
  10. Corre, E., Reysenbach, A.-L., and Prieur, D. (2001) Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol. Lett. 205, 329-335.Google Scholar
  11. Dawson, S.C. and Pace, N.R. (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc. Natl. Acad. Sci. U.S.A. 99, 8324-8329.CrossRefPubMedGoogle Scholar
  12. DeLong, E.F. (2004) Microbial life breathes deep. Science 306, 2198-2200.CrossRefPubMedGoogle Scholar
  13. Deming, J.W. and Baross, J.A. (1993) Deep-sea smokers: windows to a subsurface biosphere? Geochim Cosmochim. Acta 57, 3219-3230.CrossRefPubMedGoogle Scholar
  14. D’Hondt, S., Rutherford, S., and Spivack, A.J. (2002) Metabolic activity of subsurface life in deep-sea sediments. Science 295, 2067-2070.CrossRefPubMedGoogle Scholar
  15. D’Hondt, S.L., Jørgensen, B.B., Miller, D.J., Batzke, A., R. Blake, R., Cragg, B.A., Cypionka, H., Dickens, G.R., Ferdelman, T., Hinrichs, K-U., Holm. N.G., Mitterer, R., Spivack, A., Wang, G., Bekins, B., Engelen, B., Ford, K., Gettemy, G., Rutherford, S.D., Sass, H., Skilbeck, C.G., Aiello, I., Guerin, G., House, C., Inagaki, F., Meister, P., Naehr, T., Niitsuma, S., Parkes, R.J., Schippers, A., Smith, D.C., Teske, A., Wiegel, J., Padilla, C.N., and Acosta, J.L.S. (2004). Distributions of microbial activities in deep subseafloor sediments. Science 306, 2216-2222.Google Scholar
  16. Edgcomb, V., Kysela, D., Teske, A., de Vera Gomez, A., and Sogin, M.L. (2002) Benthic eukaryotic diversity in the Guaymas Basin, a hydrothermal vent environment. Proc. Natl. Acad. Sci. U.S.A. 99,7658-7662.CrossRefPubMedGoogle Scholar
  17. Fisher, A.T., Davis, E.E., Hutnak, M., Spiess, V., Zühlsdorff, L., Cherkaoui, A., Christiansen, L., Edwards, K.M., MacDonald, R., Villinger, H., Mottl, M.J., Wheat, C.G., and Becker, K. (2003) Hydrothermal recharge and discharge across 50 km guided by seamounts on a young ridge flank. Nature 421, 618-621.CrossRefPubMedGoogle Scholar
  18. Harmsen, H.J.M., Prieur, D., and Jeanthon, C. (1997a) Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations. Appl. Environ. Microbiol. 63, 2876-2883.PubMedGoogle Scholar
  19. Harmsen, H.J.M., Prieur, D., and Jeanthon, C. (1997b) Group-specific 16S-rRNA-targeted oligonu-cleotide probes to identify thermophilic bacteria in marine hydrothermal vents. Appl. Environ. Microbiol. 63, 4061-4068.PubMedGoogle Scholar
  20. Hoek J., Banta, A., Hubler, F., and Reysenbach, A.-L. (2003) Microbial diversity of a sulphide spire located in the Edmond deep-sea hydrothermal vent filed on the Central Indian Ridge. Geobiology 1, 119-127.CrossRefGoogle Scholar
  21. Holden, J.F., Summit, M., and Baross, J.A. (1998) Thermophilic and hyperthermophilic microorgan-isms in 3-30°C hydrothermal fluids following a deep-sea volcanic eruption. FEMS Microbiol. Ecol. 25, 33-41.Google Scholar
  22. Huber, H., Hohn, M.J., Rachel, R., Fuchs, T., Wimmer, V.C., and Stetter, K.O. (2002) A new phylum of archaea represented by a nanosized hyperthermophilic symbiont. Nature 417, 63-67.CrossRefPubMedGoogle Scholar
  23. Huber, J.A., Butterfield, D.A., and Baross, J.A. (2002) Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat. Appl. Environ. Microbiol. 68, 1585-1594.CrossRefPubMedGoogle Scholar
  24. Inagaki, F., Suzuki, M., Takai, K., Oida, H., Sakamoto, T., Aoki, K., Nealson, K.H., and Horikoshi, K. (2003a) Microbial communities associated with geological horizons in coastal subseafloor systems from the Sea of Okhotsk. Appl. Environ. Microbiol. 69, 7224-7235.CrossRefPubMedGoogle Scholar
  25. Inagaki, F., Takai, K., Hirayama, H., Yamato, Y., Nealson, K.H., and Horikoshi, K. (2003b) Distribution and phylogenetic diversity of the subsurface microbial community in a Japanese epithermal gold mine. Extremophiles 7, 301-317.CrossRefGoogle Scholar
  26. Inagaki, F., Nunoura, T., Nakagawa, S., Teske, A., Lever, M., Lauer, A., Suzuki, M., Takai, K., Delwiche, M., Colwell, F.S., Nealson, K.H., Horikoshi, K., D’Hondt, S.L., and Jørgensen, B.B. (2006) Biogeographical distribution and diversity of microbes in methane-hydrate bearing deep marine sediments on the Pacific Ocean Margin. Proc. Natl. Acad. Sci. U.S.A. 103, 2815-2820.CrossRefPubMedGoogle Scholar
  27. Jeanthon, C. (2000) Molecular ecology of hydrothermal vent microbial communities. Antonie van Leeuwenhoek 77, 117-133.CrossRefPubMedGoogle Scholar
  28. Kashefi, K. and Lovley, D.R. (2003) Extending the upper temperature limit for life. Science 301, 934.CrossRefPubMedGoogle Scholar
  29. Kelley, D.S., Baross, J.A., and Delaney, J.R. (2002) Volcanoes, fluids, and life at mid-ocean ridge spreading centers. Annu. Rev. Earth Planet. Sci. 30: 385-491.CrossRefGoogle Scholar
  30. Knittel, K., Lösekann, T., Boetius, A., Kort, R., and Amann, R. (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl. Environ. Microbiol. 71, 467-479.CrossRefPubMedGoogle Scholar
  31. Kormas, A.K., Tivey, M.K., Von Damm, K., and Teske, A. (2006) Molecular characterization of the prokaryotic diversity associated with distinct mineralogical layers of a white smoker spire from a deep-sea hydrothermal vent site (9°N, East Pacific Rise). Environ. Microbiol. 8, 909-920.CrossRefPubMedGoogle Scholar
  32. LaPaglia, C. and Hartzell, P.L. (1997) Stress-induced production of biofilm in the hyperthermophile Archaeoglobus fulgidus. Appl. Environ. Microbiol. 63, 3158-3163.PubMedGoogle Scholar
  33. López-Garcia, P., Rodríguez-Valera, F., Pedrós-Alió, C., and Moreira, D. (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603-607.CrossRefPubMedGoogle Scholar
  34. López-Garcia, P., Duperron, S., Philippot, P., Foriel, J., Susini, J., and Moreira, D. (2003a) Bacterial diversity in hydrothermal sediment and epsilon-proteobacteria dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ. Microbiol. 5, 961-976.CrossRefPubMedGoogle Scholar
  35. López-Garcia, P., Philippe, H., Gail, F., and Moreira, D. (2003b) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc. Natl. Acad. Sci. U.S.A. 100, 697-702.CrossRefPubMedGoogle Scholar
  36. Mauclaire, L., Zepp, K., Meister, P., and McKenzie, J. (2004) Direct in situ detection of cells in deep-sea sediment cores from the Peru Margin (ODP Leg 201, Site 1229). Geobiology 2, 217-223.CrossRefGoogle Scholar
  37. McCollom, T.M. and Shock, E.L. (1997) Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim. Cosmochim. Acta 61, 4375-4391.CrossRefPubMedGoogle Scholar
  38. Moon van der Staay, S.Y., De Wachter, R., and Vaulot, D. (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409, 607-610.Google Scholar
  39. Nercessian, O., Reysenbach, A.-L., Prieur, D., and Jeanthon, C. (2003). Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13°N). Environ. Microbiol. 5, 492-502.CrossRefPubMedGoogle Scholar
  40. Newberry, C.J., Webster, G., Cragg, B.A., Parkes, J.R., Weightman, A.J., and Fry, J.C. (2004) Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ. Microbiol. 6, 274-287.CrossRefPubMedGoogle Scholar
  41. Novarino, G., Warren, A., Butler, H., Lambourne, G., Boxshall, A., Bateman, J., Kinner, N.E., Harvey, R.W., Mosse, R.A., and Teltsch, B. (1997) Protistan communities in aquifers: a review. FEMS Microbiol. Rev. 20, 261-275.CrossRefPubMedGoogle Scholar
  42. Parkes, J.R, Cragg, B.A., and Wellsbury, P. (2000) Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeology J. 8, 11-28.CrossRefGoogle Scholar
  43. Parkes, R.J., Webster, G., Cragg, B.A., Weightman, A.J., Newberry, C.J., Ferdelman, T.G., Kallmeyer, J., Jørgensen, B.B., Aiello, I.W., and Fry, J.C. (2005) Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436, 390-394.CrossRefPubMedGoogle Scholar
  44. Pysz, M.A., Conners, S.B., Montero, C.I., Shockley, K.R., Johnson, M.R., Ward, D.E., and Kelly, R.M. (2004) Transcriptional analysis of biofilm formation processes in the anaerobic, hyper-thermophilic bacterium Thermotoga maritima. Appl. Environ. Microbiol. 70, 6098-6112.CrossRefPubMedGoogle Scholar
  45. Reed, D.W., Fujita, Y., Delwiche, M.E., Blackwelder, D.B., Sheridan P.P., Uchida, T., and Colwell, F.S. (2002) Microbial communities from methane-hydrate-bearing deep marine sediments in a fore-arc basin. Appl. Environ. Microbiol. 68, 3759-3770.CrossRefPubMedGoogle Scholar
  46. Reysenbach, A.-L. and Shock, E. (2002) Merging genomes with geochemistry in hydrothermal ecosys-tems. Science 296, 1077-1082.CrossRefPubMedGoogle Scholar
  47. Reysenbach, A.-L., Longnecker, K., and Kirshtein, J. (2000) Novel bacterial and archaeal lineages from an in-situ growth chamber deployed at a Mid-Atlantic Ridge Hydrothermal vent. Appl. Environ. Microbiol. 66, 3798-3806.CrossRefPubMedGoogle Scholar
  48. Reysenbach A.-L., Götz, D., and Yernool, D. (2001) Microbial diversity of marine and terrestrial thermal springs. In: J.T. Staley and A.-L. Reysenbach (eds) Biodiversity of Microbial Life: Foundation of Earth’s Biosphere. New York, Wiley-Liss, pp. 345-421.Google Scholar
  49. Rinker, K.D. and Kelly, R.M. (1996) Growth physiology of the hyperthermophilic archaeon Thermococcus litoralis: development of a sulfur-free defined medium, characterization of an exopolysaccharide, and evidence of biofilm formation. Appl. Environ. Microbiol. 62, 4478-4485.PubMedGoogle Scholar
  50. Scheckenbach, F., Wylezich, C., Weitere, M., Hausmann, K., and Arndt, H. (2005) Molecular iden-tity of strains of heterotrophic flagellates from surface waters and deep-sea sediments of the South Atlantic based on SSU rDNA. Aquat. Microb. Ecol. 38, 239-247.CrossRefGoogle Scholar
  51. Schippers, A. and Neretin, L.N. (2006) Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. Environ. Microbiol. 8, 1251-1260.CrossRefPubMedGoogle Scholar
  52. Schippers, A., Neretin, L.N., Kallmeyer, J., Ferdelman, T.G., Cragg, B.A., Parkes, J.R., and Jørgensen, B.B. (2005) Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433, 861-864.CrossRefPubMedGoogle Scholar
  53. Schrenk, M.O., Kelley, D.S., Delaney, J.R., and Baross, J.A. (2003) Incidence and diversity of micro-organisms within the walls of an active deep-sea sulfide chimney. Appl. Environ. Microbiol. 69, 3580-3592.CrossRefPubMedGoogle Scholar
  54. Sørensen, K.B. and Teske, A. (2006) Stratified communities of active archaea in deep marine subsur-face sediments. Appl. Environ. Microbiol. 72, 4596-4603.CrossRefPubMedGoogle Scholar
  55. Sørensen, K.B., Lauer, A., and Teske, A. (2004) Archaeal phylotypes in a metal-rich, low-activity deep subsurface sediment of the Peru Basin, ODP Leg 201, Site 1231. Geobiology 2, 151-161.CrossRefGoogle Scholar
  56. Stein, L.Y., Jones, G., Alexander, B., Elmund, K., Wright-Jones, C., and Nealson, K.H. (2002) Intriguing microbial diversity associated with metal-rich particles from a freshwater reservoir. FEMS Microbiol. Ecol. 42, 431-440.Google Scholar
  57. Stoeck, T. and Epstein, S. (2003) Novel eukaryotic lineages inferred from small-subunit rRNA analy- ses of oxygen-depleted marine environments. Appl. Environ. Microbiol. 69, 2657-2663.CrossRefPubMedGoogle Scholar
  58. Stoeck, T., Taylor, G.T., and Epstein, S. (2003) Novel eukaryotic from the permanently anoxic Cariaco Basin (Caribbean Sea). Appl. Environ. Microbiol. 69, 5656-5663.CrossRefPubMedGoogle Scholar
  59. Sturt, H.F., Summons, R.E., Smith, K.J., Elvert, M., and Hinrichs, K.-U. (2004) Intact polar lipids in prokaryotes and sediments deciphered by high-performance liquid chromatography/electrospray ionization multistage mass spectrometry - new biomarkers for biogeochemistry and microbial ecology. Rapid Communications in Mass Spectrometry 18, 617-628.CrossRefPubMedGoogle Scholar
  60. Summit, M. and Baross, J.A. (2001) A novel microbial habitat in the mid-ocean ridge subseafloor. Proc. Natl. Acad. Sci. U.S.A. 98, 2158-2163.CrossRefPubMedGoogle Scholar
  61. Takai, K. and Horikoshi, K. (1999) Genetic diversity of Archaea in deep-sea hydrothermal vent envi-ronments. Genetics 152, 1285-1297.PubMedGoogle Scholar
  62. Takai, K., Komatsu, T., Inagaki, F., and Horikoshi, K. (2001a) Distribution of archaea in a black smoker chimney structure. Appl. Environ. Microbiol. 67, 3618-3629.CrossRefPubMedGoogle Scholar
  63. Takai, K., Moser, D.P., DeFlaun, M., Onstott, T., and Fredrickson, J.K. (2001b) Archaeal diversity in waters from deep South African gold mines. Appl. Environ. Microbiol. 67, 5750-5760.CrossRefPubMedGoogle Scholar
  64. Takai, K., Inagaki, F., Nakagawa, S., Hirayama, H., Nunoura, T., Sako, Y., Nealson, K.H., and Horikoshi, K. (2003) Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal vents. FEMS Microbiol. Lett. 218, 167-174.PubMedGoogle Scholar
  65. Takai K., Gamo T., Tsunogai U., Nakayama N., Hirayama H., Nealson, K.H., and Horikoshi, K. (2004a) Geochemical and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface lithoautotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles 8, 269-282.CrossRefPubMedGoogle Scholar
  66. Takai K., Inagaki F., and Horikoshi K. (2004b) Distribution of unusual archaea in subsurface bios-phere. In: W.S.D. Wilcock, E.F. DeLong, D.S. Kelley, J.A. Baross, and S.C. Cary (eds.) The Subseafloor Biosphere at Mid-Ocean Ridges. Geophysical Monograph 144, American Geophysical Union, Washington DC, pp. 369-381.Google Scholar
  67. Takishita, K., Miyake, H., Kawato, M., and Maruyama, T. (2005) Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny. Extremophiles 9, 185-196.CrossRefPubMedGoogle Scholar
  68. Teske, A. 2006. Microbial community composition in deep marine subsurface sediments of ODP Leg 201: sequencing surveys and cultivations. In: B.B. Jørgensen, S.L. D’Hondt, and D.J. Miller (eds.). Proc. ODP, Sci. Results, 201, 1-20 [Online] Available from World Wide Web: <http:www-odp.tamu.edu/publications/201_SR/VOLUME/CHAPTERS/120.PDF>. Accessed 2006-05-19].
  69. Teske, A. and Stahl, D.A. (2002) Microbial mats and biofilms: evolution, structure and function of fixed microbial communities. In: J.T. Staley and A.-L. Reysenbach (eds.) Biodiversity of Microbial Life: Foundation of Earth’s Biosphere. New York, Wiley-Liss, pp. 49-100.Google Scholar
  70. Teske, A., Hinrichs, K.-U., Edgcomb, V., Gomez, A.d.V., Kysela, D., Sylva, S.P., Sogin, M.L., and Jannasch, H.W. (2002) Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl. Environ. Microbiol. 68, 1994-2007.CrossRefPubMedGoogle Scholar
  71. Vetriani, C., Jannasch, H.W., MacGregor, B.J., Stahl, D.A., and Reysenbach, A.-L. (1999) Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl. Environ. Microbiol. 65, 4375-4384.PubMedGoogle Scholar
  72. Whitman, W.B., Coleman, D.C., and Wiebe, W.J. (1998) Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. U.S.A. 95, 6578-6583.CrossRefPubMedGoogle Scholar
  73. Wilms, R., Sass, H., Köpke, B., Köster, J., Cypionka, H., and Engelen, B. (2006) Specific bacterial, archaeal, and eukaryotic communities in tidal-flat sediments along a vertical profile. Appl. Environ. Microbiol. 72, 2756-2764.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Andreas Teske
    • 1
  1. 1.Department of Marine SciencesUniversity of North CarolinaChapel HillUSA

Personalised recommendations