Advertisement

A Genomics Approach to Understanding the Biology of Thermo-Acidophilic Red Algae

  • Andreas P. M. Weber
  • Guillaume G. Barbier
  • Roshan P. Shrestha
  • Robin J. Horst
  • Ayumi Minoda
  • Christine Oesterhelt
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

While members of the archae rule at the high end of the temperature spectrum of life, members of the bacteria and eukaryotes thrive in a wide range of extreme conditions, including low temperatures, high and low pH-values, high salinity, and desiccation. In this context, it is important to note that the definition of extreme (and thus extremophilic) is anthropocentric, defining those environments as extreme that are hostile to human life. Photosynthetic protists are particularly versatile when it comes to occupying extreme habitats and thriving under extreme conditions. Protists thrive in saturated salt solutions, in hot acid, in extreme cold, and at high pH. This chapter deals with a small group of thermo-acidophilic unicellular red algae, called the Cyanidiophyceae.

Keywords

Plastid Genome Phylogenetic Profile Thalassiosira Pseudonana Photosynthetic Eukaryote Cyanidioschyzon Merolae 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, M.D., Celniker, S.E., Holt, R.A., Evans, C.A., Gocayne, J.D., Amanatides, P.G., Scherer, S.E., Li, P.W., Hoskins, R.A., Galle, R.F. et al. (2000) The genome sequence of Drosophila melanogaster. Science 287, 2185-2195.PubMedGoogle Scholar
  2. Albertano, P. and Pinto, G. (1986) The action of heavy metals on the growth of the acidophilic algae. Boll Soc Natur Napoli 45, 319-328.Google Scholar
  3. Albertano, P., Ciniglia, C., Pinto, G. and Pollio, A. (2000) The taxonomic position of Cyanidium, Cyanidioschyzon and Galdieria: an update. Hydrobiologia 433, 137-143.Google Scholar
  4. Allen, E.E. and Banfield, J.F. (2005) Communitygenomics in microbial ecology and evolution. Nat Rev Microbiol 3, 489-498.PubMedGoogle Scholar
  5. Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, S., Allen, A.E., Apt, K.E., Bechner, M. et al. (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79-86.PubMedGoogle Scholar
  6. Barbier, G., Oesterhelt, C., Larson, M.D., Halgren, R.G., Wilkerson, C., Garavito, R.M., Benning, C. and Weber, A.P.M. (2005a) Genome Analysis. Comparative genomics of two closely related uni-cellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae, reveals the molecular basis of the metabolic flexibility of Galdieria and significant differences in carbo-hydrate metabolism of both algae. Plant Physiol 137, 460-474.PubMedGoogle Scholar
  7. Barbier, G.G., Zimmermann, M. and Weber, A.P.M. (2005b) Genomics of the thermo-acidophilic red alga Galdieria sulphuraria. In: R.B. Hoover, G.V. Levin, A.Y. Rozanov, and G.R. Gladstone (eds.) Astrobiology and Planetary Missions SPIE, San Diego, CA, U S A pp. 67-78.Google Scholar
  8. Batzoglou, S., Jaffe, D.B., Stanley, K., Butler, J., Gnerre, S., Mauceli, E., Berger, B., Mesirov, J.P. and Lander, E.S. (2002) ARACHNE: A whole-genome shotgun assembler. Genome Res 12, 177-189.PubMedGoogle Scholar
  9. Bhattacharya, D. and Medlin, L. (1995) The phylogeny of plastids - a review based on comparisons of small-subunit ribosomal-RNA coding regions. J Phycol 31, 489-498.Google Scholar
  10. Bhattacharya, D. and Medlin, L. (1998) Algal phylogeny and the origin of land plants. Plant Physiol 116,9-15.Google Scholar
  11. Blattner, F.R., Plunkett, G., 3rd, Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F. et al. (1997) The complete genome sequence of Escherichia coli K-12. Science 277, 1453-1474.PubMedGoogle Scholar
  12. Boenzi, D., Deluca, P. and Taddei, R. (1977) Fatty acids in Cyanidium. Giorn Bot Ital 1111, 129-134.Google Scholar
  13. Bono H., Ogata H., Goto S. and Kanehisa M. (1998) Reconstruction of amino acid biosynthesis path-ways from the complete genome sequence. Genome Res 8, 203-210.PubMedGoogle Scholar
  14. Bowers, P.M., Cokus, S.J., Eisenberg, D. and Yeates, T.O. (2004a) Use of logic relationships to deci-pher protein network organization. Science 306, 2246-2249.PubMedGoogle Scholar
  15. Bowers, P.M., Pellegrini, M., Thompson, M.J., Fierro, J., Yeates, T.O. and Eisenberg, D. (2004b) Prolinks: a database of protein functional linkages derived from coevolution. Genome Biol 5, R35.PubMedGoogle Scholar
  16. Bowers, P.M., O’Connor, B.D., Cokus, S.J., Sprinzak, E., Yeates, T.O. and Eisenberg, D. (2005) Utilizing logical relationships in genomic data to decipher cellular processes. FEBS J 272, 5110-5118.PubMedGoogle Scholar
  17. Burge, C. and Karlin, S. (1997) Prediction of complete gene structures in human genomic DNA. J Mol Biol 268, 78-94.PubMedGoogle Scholar
  18. Cavalier-Smith, T. (2002a) Chloroplast evolution: secondary symbiogenesis and multiple losses. Curr Biol 12, R62-64.PubMedGoogle Scholar
  19. Cavalier-Smith, T. (2002b) Nucleomorphs: enslaved algal nuclei. Curr Opin Microbiol 5, 612-619.PubMedGoogle Scholar
  20. Cavalier-Smith, T. (2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Philos Trans R Soc Lond B Biol Sci 358, 109-134.PubMedGoogle Scholar
  21. Chen, L. and Vitkup, D. (2006) Predicting genes for orphan metabolic activities using phylogenetic profiles. Genome Biol 7, R17.PubMedGoogle Scholar
  22. Chervitz, S.A., Aravind, L., Sherlock, G., Ball, C.A., Koonin, E.V., Dwight, S.S., Harris, M.A., Dolinski, K., Mohr, S., Smith, T. et al. (1998) Comparison of the complete protein sets of worm and yeast: orthology and divergence. Science 282, 2022-2028.PubMedGoogle Scholar
  23. Church, G., Shendure, J. and Porreca, G. (2006) Sequencing thoroughbreds. Nat Biotechnol 24, 139.PubMedGoogle Scholar
  24. Ciniglia, C., Yoon, H.S., Pollio, A., Pinto, G. and Bhattacharya, D. (2004) Hidden biodiversity of the extremophilic Cyanidiales red algae. Mol Ecol 13, 1827-1838.PubMedGoogle Scholar
  25. Collins, F.S., Morgan, M. and Patrinos, A. (2003) The Human Genome Project: lessons from large-scale biology. Science 300, 286-290.PubMedGoogle Scholar
  26. Coppin, A., Varre, J.S., Lienard, L., Dauvillee, D., Guerardel, Y., Soyer-Gobillard, M.O., Buleon, A., Ball, S. and Tomavo, S. (2005) Evolution of plant-like crystalline storage polysaccharide in the protozoan parasite Toxoplasma gondii argues for a red alga ancestry. J Mol Evol 60, 257-267.PubMedGoogle Scholar
  27. Deluca, P. and Taddei, R. (1976) On the necessity of a systematic revision of the thermal acidophilic alga Cyanidium caldarium Tilden Geitler. Webbia 30, 197-218.Google Scholar
  28. Doemel, W.N. and Brock, T.D. (1970) The upper temperature limit of Cyanidium caldarium. Arch Mikrobiol 72, 326-332.PubMedGoogle Scholar
  29. Douglas, S., Zauner, S., Fraunholz, M., Beaton, M., Penny, S., Deng, L.T., Wu, X., Reith, M., Cavalier-Smith, T. and Maier, U.G. (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410, 1091-1096.PubMedGoogle Scholar
  30. Fleischmann, R.D., Adams, M.D., White, O., Clayton, R.A., Kirkness, E.F., Kerlavage, A.R., Bult, C.J., Tomb, J.F., Dougherty, B.A., Merrick, J.M. et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496-512.PubMedGoogle Scholar
  31. Fraser, C.M. and Fleischmann, R.D. (1997) Strategies for whole microbial genome sequencing and analysis. Electrophoresis 18, 1207-1216.PubMedGoogle Scholar
  32. Fraser, C.M., Eisen, J.A. and Salzberg, S.L. (2000) Microbial genome sequencing. Nature 406, 799-803.PubMedGoogle Scholar
  33. Gilson, P.R. and McFadden, G.I. (1997) Good things in small packages: the tiny genomes of chlo-rarachniophyte endosymbionts. Bioessays 19, 167-173.PubMedGoogle Scholar
  34. Gilson, P.R. and McFadden, G.I. (2002) Jam packed genomes-a preliminary, comparative analysis of nucleomorphs. Genetica 115, 13-28.PubMedGoogle Scholar
  35. Gilson, P.R., Maier, U.G. and McFadden, G.I. (1997) Size isn’t everything: lessons in genetic minia-turisation from nucleomorphs. Curr Opin Genet Dev 7, 800-806.PubMedGoogle Scholar
  36. Glöckner, G., Rosenthal, A. and Valentin, K. (2000) The structure and gene repertoire of an ancient red algal plastid genome. J Mol Evol 51, 382-390.PubMedGoogle Scholar
  37. Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J.D., Jacq, C., Johnston, M. et al. (1996) Life with 6000 genes. Science 274, 546, 563-547.Google Scholar
  38. Green, E.D. (2001) Strategies for the systematic sequencing of complex genomes. Nat Rev Genet 2, 573-583.PubMedGoogle Scholar
  39. Gross, W. (1999) Revision of comparative traits for the acido- and thermophilic red algae Cyanidium and Galdieria. In: J. Seckbach (ed.) Enigmatic Microorganisms and Life in Extreme Environments, Kluwer, Dordrecht. pp. 437-446.Google Scholar
  40. Gross, W. and Gross, S. (2001) Physiological characterization of the red alga Galdieria sulphuraria iso-lated from a highly acidic mining area. Nova Hedwigia 123, 523-530.Google Scholar
  41. Gross, W., Heilmann, I., Lenze, D. and Schnarrenberger, C. (2001) Biogeography of the Cyanidiaceae (Rhodophyta) based on 18S ribosomal RNA sequence data. Eur J Phycol 36, 275-280.Google Scholar
  42. Gross, W., Oesterhelt, C., Tischendorf, G. and Lederer, F. (2002) Characterization of a non-thermophilic strain of the red algal genus Galdieria isolated from Soos (Czech Republic). Eur J Phycol 37, 477-482.Google Scholar
  43. Hoffmann, L. (1994) Cyanidium-like algae from caves. In: J. Seckbach (ed.) Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells, Kluwer Academic Publishers, Dordrecht. pp. 175-182.Google Scholar
  44. Keeling, P.J. and Palmer, J.D. (2001) Lateral transfer at the gene and subgenic levels in the evolution of eukaryotic enolase. Proc Natl Acad Sci U S A 98, 10745-10750.PubMedGoogle Scholar
  45. Kharchenko, P., Vitkup, D. and Church, G.M. (2004) Filling gaps in a metabolic network using expression information. Bioinformatics 20 Suppl 1, I178-I185.PubMedGoogle Scholar
  46. Kharchenko, P., Chen, L., Freund, Y., Vitkup, D. and Church G.M. (2006) Identifying metabolic enzymes with multiple types of association evidence. BMC Bioinformatics 7, 177.PubMedGoogle Scholar
  47. Korf, I. (2004) Gene finding in novel genomes. BMC Bioinformatics 5, 59.PubMedGoogle Scholar
  48. Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W. et al. (2001) Initial sequencing and analysis of the human genome. Nature 409, 860-921.PubMedGoogle Scholar
  49. Liolios, K., Tavernarakis, N., Hugenholtz, P. and Kyrpides, N.C. (2006) The Genomes On Line Database (GOLD) v.2: a monitor of genome projects worldwide. Nucleic Acids Res 34, D332-D334.PubMedGoogle Scholar
  50. Lukashin, A.V. and Borodovsky, M. (1998) GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res 26, 1107-1115.PubMedGoogle Scholar
  51. Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.J., Chen, Z. et al. (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376-380.PubMedGoogle Scholar
  52. Marquardt, J., Wans, S., Rhiel, E., Randolf, A. and Krumbein, W.E. (2000) Intron-exon structure and gene copy number of a gene encoding for a membrane-intrinsic light-harvesting polypeptide of the red alga Galdieria sulphuraria. Gene 255, 257-265.PubMedGoogle Scholar
  53. Martin, W., Stoebe, B., Goremykin, V., Hansmann, S., Hasegawa, M. and Kowallik, K.V. (1998) Gene transfer to the nucleus and the evolution of chloroplasts. Nature 393, 162-165.PubMedGoogle Scholar
  54. Martin, W., Rujan, T., Richly, E., Hansen, A., Cornelsen, S., Lins, T., Leister, D., Stoebe, B., Hasegawa, M. and Penny, D. (2002) Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 99, 12246-12251.PubMedGoogle Scholar
  55. Mathe, C., Sagot, M.F., Schiex, T. and Rouze, P. (2002) Current methods of gene prediction, their strengths and weaknesses. Nucleic Acids Res 30, 4103-4117.PubMedGoogle Scholar
  56. Matsuzaki, M., Misumi, O., Shin, I.T., Maruyama, S., Takahara, M., Miyagishima, S.Y., Mori, T., Nishida, K., Yagisawa, F., Yoshida, Y. et al. (2004) Genome sequence of the ultrasmall unicellu-lar red alga Cyanidioschyzon merolae 10D. Nature 428, 653-657.PubMedGoogle Scholar
  57. McFadden, G.I. (1999) Endosymbiosis and evolution of the plant cell. Curr Opin Plant Biol 2, 513-519.PubMedGoogle Scholar
  58. McFadden, G.I., Gilson, P.R., Douglas, S.E., Cavalier-Smith, T., Hofmann, C.J. and Maier, U.G. (1997) Bonsai genomics: sequencing the smallest eukaryotic genomes. Trends Genet 13, 46-49.PubMedGoogle Scholar
  59. Merola, A., Castaldo, R., De Luca, P., Gambardella, R., Musachio, A. and Taddei, R. (1981) Revision of Cyanidium caldarium. Three species of acidophylic algae. Giorn Bot Ital 115, 189-195.Google Scholar
  60. Minoda, A., Sakagami, R., Yagisawa, F., Kuroiwa, T. and Tanaka, K. (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 45, 667-671.PubMedGoogle Scholar
  61. Minoda, A., Nagasawa, K., Hanaoka, M., Horiuchi, M., Takahashi, H. and Tanaka, K. (2005) Microarray profiling of plastid gene expression in a unicellular red alga, Cyanidioschyzon mero-lae. Plant Mol Biol 59, 375-385.PubMedGoogle Scholar
  62. Misumi, O., Matsuzaki, M., Nozaki, H., Miyagishima, S.Y., Mori, T., Nishida, K., Yagisawa, F., Yoshida, Y., Kuroiwa, H. and Kuroiwa, T. (2005) Cyanidioschyzon merolae genome. A tool for facilitating comparable studies on organelle biogenesis in photosynthetic eukaryotes. Plant Physiol 137, 567-585.PubMedGoogle Scholar
  63. Moreira, D., Lopezarchilla, A.I., Amils, R. and Marin, I. (1994) Characterization of 2 new ther-moacidophilic microalgae - Genome organization and comparison with Galdieria sulphuraria. FEMS Microbiol Lett 122, 109-114.Google Scholar
  64. Muravenko, O.V., Selyakh, I.O., Kononenko, N.V. and Stadnichuk, I.N. (2001) Chromosome numbers and nuclear DNA contents in the red microalgae Cyanidium caldarium and three Galdieria species. Eur J Phycol 36, 227-232.Google Scholar
  65. Nagasaka, S., Nishizawa, N.K., Mori, S. and Yoshimura, E.Y. (2004) Metal metabolism in the red alga Cyanidium caldarium and its relationship to metal tolerance. Biometals 17, 177-181.PubMedGoogle Scholar
  66. Nagashima, H., Matsumoto, G.I. and Fukuda, I. (1986) Hydrocarbons and fatty-Acids in 2 strains of the hot-spring alga Cyanidium caldarium. Phytochemistry 25, 2339-2341.Google Scholar
  67. Ng, W.V., Kennedy, S.P., Mahairas, G.G., Berquist, B., Pan, M., Shukla, H.D., Lasky, S.R., Baliga, N.S., Thorsson, V., Sbrogna, J. et al. (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci U S A 97, 12176-12181.PubMedGoogle Scholar
  68. O’Brien, S.J., Menotti-Raymond, M., Murphy, W.J., Nash, W.G., Wienberg, J., Stanyon, R., Copeland, N.G., Jenkins, N.A., Womack, J.E. and Marshall Graves, J.A. (1999) The promise of comparative genomics in mammals. Science 286, 458-462, 479-481.PubMedGoogle Scholar
  69. Ohta, N., Sato, N. and Kuroiwa, T. (1998) Structure and organization of the mitochondrial genome of the unicellular red alga Cyanidioschyzon merolae deduced from the complete nucleotide sequence. Nucleic Acids Res 26, 5190-5298.PubMedGoogle Scholar
  70. Ohta, N., Matsuzaki, M., Misumi, O., Miyagishima, S.Y., Nozaki, H., Tanaka, K., Shin, I.T., Kohara, Y. and Kuroiwa, T. (2003) Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res 10, 67-77.PubMedGoogle Scholar
  71. Osterman, A. and Overbeek, R. (2003) Missing genes in metabolic pathways: a comparative genomics approach. Curr Opin Chem Biol 7, 238-251.PubMedGoogle Scholar
  72. Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G.D. and Maltsev, N. (1999) The use of gene clus-ters to infer functional coupling. Proc Natl Acad Sci U S A 96, 2896-2901.PubMedGoogle Scholar
  73. Palmer, J.D. (2000) A single birth of all plastids? Nature 405, 32-33.PubMedGoogle Scholar
  74. Palmer, J.D. (2003) The symbiotic birth and spread of plastids: How many times and whodunit? J Phycol 39, 4-11.Google Scholar
  75. Patron, N.J. and Keeling, P.J. (2005) Common evolutionary origin of starch biosynthetic enzymes in green and red algae. J Phycol 41, 1131-1141.Google Scholar
  76. Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D. and Yeates, T.O. (1999) Assigning pro-tein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci U S A 96, 4285-4288.PubMedGoogle Scholar
  77. Poinar, H.N., Schwarz, C., Qi J., Shapiro, B., Macphee, R.D., Buigues, B., Tikhonov, A., Huson, D.H., Tomsho, L.P., Auch, A. et al. (2006) Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science 311, 392-394.PubMedGoogle Scholar
  78. Sasaki, T., Matsumoto, T., Yamamoto, K., Sakata, K., Baba, T., Katayose, Y., Wu, J., Niimura, Y., Cheng, Z., Nagamura, Y. et al. (2002) The genome sequence and structure of rice chromosome 1. Nature 420, 312-316.PubMedGoogle Scholar
  79. Sato, T., Yamanishi, Y., Kanehisa, M. and Toh, H. (2005) The inference of protein-protein interac-tions by co-evolutionary analysis is improved by excluding the information about the phylogenetic relationships. Bioinformatics 21, 3482-3489.PubMedGoogle Scholar
  80. Seckbach, J. (1991) Systematic problems with Cyanidium caldarium and Galdieria sulphuraria and their implications for molecular-biology studies. J Phycol 27, 794-796.Google Scholar
  81. Seckbach, J. and Libby, W.F. (1970) Vegetative life on Venus? Or investigations with algae which grow under pure CO2 in hot acid media at elevated pressures. Space Life Sci 2, 121-143.PubMedGoogle Scholar
  82. Seckbach, J., Baker, F.A. and Shugarman, P.M. (1970) Algae thrive under pure CO2. Nature 227, 744-745.PubMedGoogle Scholar
  83. Shendure, J., Mitra, R.D., Varma, C. and Church, G.M. (2004) Advanced sequencing technologies: methods and goals. Nat Rev Genet 5, 335-344.PubMedGoogle Scholar
  84. Shendure, J., Porreca G.J., Reppas, N.B., Lin, X., McCutcheon, J.P., Rosenbaum, A.M., Wang, M.D., Zhang, K., Mitra, R.D. and Church, G.M. (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309, 1728-1732.PubMedGoogle Scholar
  85. Sterky, F. and Lundeberg, J. (2000) Sequence analysis of genes and genomes. J Biotechnol 76, 1-31.PubMedGoogle Scholar
  86. Stiller, J.W. and Hall, B.D. (1997) The origin of red algae: Implications for plastid evolution. Proc Natl Acad Sci U S A 94, 4520-4525.PubMedGoogle Scholar
  87. Stiller, J.W. and Hall, D.B. (1998) Sequences of the largest subunit of RNA polymerase II from two red algae and their implications for rhodophyte evolution. J Phycol 34, 857-864.Google Scholar
  88. Stiller, J.W. and Hall, B.D. (2002) Evolution of the RNA polymerase IIC-terminal domain. Proc Natl Acad Sci U S A 99, 6091-6096.PubMedGoogle Scholar
  89. Stiller, J.W., Riley, J. and Hall, B.D. (2001) Are red algae plants? A critical evaluation of three key molecular data sets. J Mol Evol 52, 527-539.PubMedGoogle Scholar
  90. Stiller, J.W., Reel, D.C. and Johnson, J.C. (2003) A single origin of plastids revisited: Convergent evo-lution in organellar genome content. J Phycol 39, 95-105.Google Scholar
  91. TAGI (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408,796-815.Google Scholar
  92. Tyson, G.W., Chapman, J., Hugenholtz, P., Allen, E.E., Ram, R.J., Richardson, P.M., Solovyev, V.V., Rubin, E.M., Rokhsar, D.S. and Banfield, J.F. (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37-43.PubMedGoogle Scholar
  93. Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A. et al. (2001) The sequence of the human genome. Science 291, 1304-1351.PubMedGoogle Scholar
  94. Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., Wu, D., Paulsen, I., Nelson, K.E., Nelson, W. et al. (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304, 66-74.PubMedGoogle Scholar
  95. Vitkup, D. (2004) Biological networks: from physical principles to biological insights. Genome Biol 5, 313.PubMedGoogle Scholar
  96. Waterston, R.H., Lander, E.S. and Sulston, J.E. (2002a) On the sequencing of the human genome. Proc Natl Acad Sci U S A 99, 3712-3716.PubMedGoogle Scholar
  97. Waterston, R.H., Lindblad-Toh, K., Birney, E., Rogers, J., Abril, J.F., Agarwal, P., Agarwala, R., Ainscough, R., Alexandersson, M., An, P. et al. (2002b) Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520-562.PubMedGoogle Scholar
  98. Weber, A.P.M., Oesterhelt, C., Gross, W., Bräutigam, A., Imboden, L.A., Krassovskaya, I., Linka, N., Truchina, J., Schneidereit, J., Voll, H. et al. (2004) EST-analysis of the thermo-acidophilic red microalga Galdieria sulphuraria reveals potential for lipid A biosynthesis and unveils the pathway of carbon export from rhodoplasts. Plant Mol Biol 55, 17-32.PubMedGoogle Scholar
  99. Weber, A.P.M., Linka, M. and Bhattacharya, D. (2006) Single, ancient origin of a plastid metabolite translocator family in Plantae from an endomembrane-derived ancestor. Eukaryot Cell 5, 609-612.PubMedGoogle Scholar
  100. Wei, L.P., Liu, Y.Y., Dubchak, I., Shon, J. and Park, J. (2002) Comparative genomics approaches to study organism similarities and differences. J Biomed Inform 35, 142-150.PubMedGoogle Scholar
  101. Wendl, M.C., Marra, M.A., Hillier, L.W., Chinwalla, A.T., Wilson, R.K. and Waterston, R.H. (2001) Theories and applications for sequencing randomly selected clones. Genome Res 11, 274-280.PubMedGoogle Scholar
  102. Yamada, T., Kanehisa, M. and Goto, S. (2006) Extraction of phylogenetic network modules from the metabolic network. BMC Bioinformatics 7, 130.PubMedGoogle Scholar
  103. Yoon, H.S., Hackett, J.D., Pinto, G. and Bhattacharya, D. (2002) The single, ancient origin of chromist plastids. Proc Natl Acad Sci U S A 99, 15507-15512.PubMedGoogle Scholar
  104. Yoon, H.S., Hackett, J.D., Ciniglia, C., Pinto, G. and Bhattacharya, D. (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21, 809-818.PubMedGoogle Scholar
  105. Yoon, H.S., Muller, K.M., Sheath, R.G., Ott, F.D. and Bhattacharya, D. (2006) Defining the major lineages of red algae (Rhodophyta). J Phycol 42,482-492.Google Scholar
  106. Yu, J., Hu, S., Wang, J., Wong, G.K., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X. et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 79-92.PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Andreas P. M. Weber
    • 1
  • Guillaume G. Barbier
    • 1
  • Roshan P. Shrestha
    • 1
  • Robin J. Horst
    • 1
  • Ayumi Minoda
    • 1
  • Christine Oesterhelt
    • 2
  1. 1.Department of Plant BiologyMichigan State UniversityEast LansingUSA
  2. 2.Institut für Biochemie und BiologieUniversität PotsdamGermany

Personalised recommendations