Eukaryotic Community Structure from Río Tinto (SW, Spain), a Highly Acidic River

  • Angeles Aguilera
  • Linda Amaral-Zettler
  • Virginia Souza-Egipsy
  • Erik Zettler
  • Ricardo Amils
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

A major question in microbial ecology is to identify the limits of life for growth and survival, and to understand the molecular mechanisms that define these limits. Our ongoing exploration of the Earth has led to continued discoveries of life in environments that have been previously considered uninhabitable. Thus, interest in the biodiversity and ecology of extreme environments has grown in recent years for several reasons: some of these are scientific and related to the idea that extreme environments are believed to reflect early Earth conditions; conditions that persisted for most of the time that life has been on the Earth and to which prokaryotes originally evolved and adapted (Schopf and Walter, 1982). Other reasons are more commercial, such as the use of the metabolic properties of some microorganisms for metal extraction.


Heavy Metal Extracellular Polymeric Substance Extreme Environment Acidithiobacillus Ferrooxidans Iron Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilera, A. and Amils, R. (2005) Tolerance to cadmium in Chlamydomonas sp. (Chlorophyta) strains isolated from an extreme acidic environment, the Tinto River (SW, Spain). Aquatic Toxicol. 75,316-329.CrossRefGoogle Scholar
  2. Aguilera, A., Souza-Egipsy, V., Gómez, F. and Amils, R. (2006) Development and structure of eukary-otic biofilms in an extreme acidic environment, Río Tinto (SW, Spain). Microb Ecol. 53, 294-305.CrossRefGoogle Scholar
  3. Allan, R.J. (1995) Impact of mining activities on the terrestrial and aquatic environment. In: W. Salomons, U. Forstner, P. Mader (eds.) Heavy Metals: Problems and Solutions. SpringerVerlag, Berlin, Germany, pp. 120-140.Google Scholar
  4. Amaral-Zettler, L.A., Gómez, F., Zettler, E., Keenan, B.G., Amils, R. and Sogin, M.L. (2002) Eukaryotic diversity in Spain’s river of fire. Nature 417, 137.CrossRefPubMedGoogle Scholar
  5. Amaral-Zettler, L.A., Messerli, M., Laatsch, A., Smith, P. and Sogin, M.L. (2003) From genes to genomes: Beyond biodiversity in Spain’s Río Tinto. Biol. Bull. 204, 205-209.CrossRefPubMedGoogle Scholar
  6. Amils, R., González-Toril, E., Gómez, F., Fernández-Remolar, D., Rodríguez, N., Malki, M., Zuluaga, J., Aguilera, A. and Amaral-Zettler, L.A. (2004) Importance of chemolithotrophy for early life on Earth: The Tinto River (Iberian Pyritic Belt) case. In: J. Seckbach (ed.) Origins. Kluwer Academic Publisher, Dordrecht, pp. 463-480.Google Scholar
  7. Amils, R., González-Toril, E., Fernández-Remolar, D., Gómez, F., Aguilera, A., Rodríguez, N., Malki, M., García-Moyano, A., Fiaren, A.G., de la Fuente, V. and Sanz, J.L. (2006) Extreme environments as Mars terrestrial analogs: The Rio Tinto case. Planet Space Sci. 55, 370-381.CrossRefGoogle Scholar
  8. Baffico, G.D., Díaz, M.M., Wenzel, M.T., Koschorreck, M., Schimmele, M., Neu, T.R. and Pedrozo, F. (2004) Community structure and photosynthetic activity of epilithon from a highly acidic (pH < 2) mountain stream in Patagania, Argentina. Extremophiles 8, 465-475.Google Scholar
  9. Barranguet, C., Charantoni, E., M. Plans and Admiraal, W. (2000) Short-term response of mono-specific and natural algal biofilms to copper exposure. Eur. J. Phycol. 35, 397-406.CrossRefGoogle Scholar
  10. Battarbee, R.W., Smol, J.P. and Meriläinen, J. (1986) Diatoms as indicators of pH: An historical review. In: J.P. Smol, R.W. Battarbee, R.B. Davis and J. Meriläinen (eds.) Diatoms and Lake Acidity, Dr. W. Junk Publishers, Dordrecht, pp. 5-14.Google Scholar
  11. Battin, T.J., Kaplan, L.A., Newbold, J.D., Cheng, X. and Hansen, C. (2003) Effects of current velocity on the nascent architecture of stream microbial biofilms. Appl. Environ. Microbiol. 69, 5443-5452CrossRefPubMedGoogle Scholar
  12. Beaver, J.R. and Crisman, T.L. (1981) Acid precipitation and the response of ciliated protozoans in Florida Lakes. Verh. Int. Ver. Limnol. 21, 353-358.Google Scholar
  13. Bienert, R.W., Beaver, J.R. and Crisman, T.L. (1991) The contribution of ciliated protozoa to zoo-plankton biomass in an acidic subtropical lake. J. Protozool. 38, 352-354.Google Scholar
  14. Canovas, D., Duran, C., Rodriguez, N., Amils, R. and DeLorenzo, V. (2003) Testing the limits of biolog-ical tolerance to arsenic in a fungus isolated from the River Tinto. Environ. Microbiol. 5, 133-138.CrossRefPubMedGoogle Scholar
  15. Davis, R.A., Welty, A.T., Borrego, J., Morales, J.A., Pendon, G.J., Ryan, J.G. (2000) Río Tinto estu-ary (Spain): 5000 years of pollution. Environ. Geol. 39, 1107-1116.CrossRefGoogle Scholar
  16. Davies, D.G., Parsek, M.R., Pearson, J.P., Iglewski, B.H., Costerton, J.W., Greeberg, E.P. (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295-298.CrossRefPubMedGoogle Scholar
  17. Deneke, R. (2000) Review of rotifers and crustaceans in highly acidic environments of pH values <3. Hydrobiologia 433, 167-172.CrossRefGoogle Scholar
  18. DeNicola, D.M. (2000) A review of diatoms found in highly acidic environments. Hydrobiologia 433, 111-122.CrossRefGoogle Scholar
  19. Durán, C., Sargeant, C., Rodríguez, N. and Amils, R. (2001) Specific Cr(III) sequestering using an aci-dophilic fungal isolate. In: V.S.T. Ciminelli, O. García (eds.) Biohydrometallurgy: Fundamentals, Technology and Sustainable Development. Vol B, Elsevier, Amsterdam, pp. 237-246.Google Scholar
  20. Elbaz-Poulichet, F., Dupuy, C., Cruzado, A., Velásquez, Z., Achterberg, E.P., Braungardt, C.B. (2000) Influence of sorption processes by iron oxides and algae fixation on arsenic and phosphate cycle in an acidic estuary (Tinto River, Spain). Wat. Res. 34, 3222-3230.CrossRefGoogle Scholar
  21. Fairén, A.G., Fernández-Remolar, D., Dohm, J.M., Boaker, V.R. and Amils, R. (2004) Inhibition of carbonate synthesis in acidic oceans on early Mars. Nature 431, 423-426.CrossRefPubMedGoogle Scholar
  22. Fernández-Remolar, D.C., Rodríguez, N., Gómez, F. and Amils, R. (2003) Geological record of an acidic environment driven by the iron hydrochemistry: The Tinto river system. J. Geophys. Res. 108,5080-5095.CrossRefGoogle Scholar
  23. Fernández-Remolar, D. C., Gómez-Elvira, J., Gómez, F., Sebastián, E., Martín, J., Manfredi, J.A., Torres, J., González Kesler, C. and Amils, R. (2004) The Tinto river, an extreme acidic environ-ment under control of iron, as an analog ofthe Terra Meridiani hematite site of Mars. Planet. Space Sci. 52, 239-248.CrossRefGoogle Scholar
  24. Fernández-Remolar, D.C., Morris, R.V., Gruener, J.E., Amils, R. and Knoll, A.H. (2005) The Río Tinto Basin, Spain: Mineralogy, sedimentary geobiology and implications for interpretation of outcrop rocks at Maridianu Planum, Mars. Earth Planet. Sci. Lett. 240, 149-167.Google Scholar
  25. Fisher, M., Zamir, A. and Pick, U. (1998) Iron uptake by the halotolerant alga Dunaliella is mediated by a plasma membrane transferring. J. Biol. Chem. 273, 17553-17558.CrossRefPubMedGoogle Scholar
  26. Flores, E. (1996) Tectónica Reciente en el Margen Ibérico Suroccidental. Ph.D. Thesis. Universidad de Huelva, Spain.Google Scholar
  27. Gadd, G.M. (1993) Interaction of fungi with toxic metals. New Phytol. 124, 25-60.CrossRefGoogle Scholar
  28. García-Meza, J.V., Barrangue, C. and Admiraal, W. (2005) Biofilm formation by algae as a mecha-nism for surviving on mine tailings. Environ. Toxicol. Chem. 24, 573-582.CrossRefPubMedGoogle Scholar
  29. Gimmler, H. and Weis, U. (1992) Dunaliella Acidophila-Life at PH1.0. In: M. Avron and A. Ben-Amotz (eds.) Dunaliella: Physiology, Biochemistry and Biotechnology. CRC Press, Boca Ratón, Florida, pp. 99-134.Google Scholar
  30. Golubic, S., Seong-Joo, L. and Browne, K.M. (2000) Cyanobacteria: Architects of sedimentary struc-tures. In: R.E. Riding and S.M. Awramik (eds.) Microbial Sediments. Springer-Verlag, Berlin, Germany, pp. 57-67.Google Scholar
  31. Gómez, F., Fernández-Remolar, D., González-Toril, E., Amils, R. (2004) The Tinto River, an extreme Gaian environment. In: J.R. Miller (ed.) Scientists Debate Gaia: The Next Century. MIT Press, Boston, pp. 321-333.Google Scholar
  32. González-Toril, E., Gómez, F., Rodríguez, N., Fenández-Remolar, D., Zuluaga, J., Marín, I. and Amils, R. (2001) Geomicrobiology of the Tinto River, a model of interest in biohydrometallurgy. In: V.S.T. Cimenelli and O. García (eds.) Biohydrometallurgy: Fundamentals, Technology and Sustainable Development. Part B. Elsevier, Amsterdam, pp. 639-650.Google Scholar
  33. González-Toril, E., Llobet-Brossa, E., Casamayor, E.O., Amann, R. and Amils, R. (2003) Microbial ecol-ogy of an extreme acidic environment. The Tinto River. Appl. Environ. Microbiol. 69, 4853-4865.CrossRefPubMedGoogle Scholar
  34. Gross, W. (2000) Ecophysiology of algae living in highly acidic environments. Hydrobiologia 433, 31-37.CrossRefGoogle Scholar
  35. Hallberg, K.B. and Johnson, D.B. (2001) Biodiversity of acidophilic prokaryotes. Adv. Appl. Microbiol. 49, 37-84.CrossRefPubMedGoogle Scholar
  36. Heinen, W. and Lauwers, A.M. (1985) The microflora of radioactive thermal springs: The lithobionts in the Franz Joseph Springs at Badgastein Austria. Mikroscopic 42, 124-134.Google Scholar
  37. Horodyski, R., Bloeser, J., Vonder Haar, S. (1977) Laminated algal mats from a coastal lagoon Laguna Mormona, Baja California, Mexico. J Sediment. Petrol. 47, 680-696Google Scholar
  38. Hough D.W. and Danson M.J. (1999) Extremozymes. Curr. Opin. Chem. Biol. 3, 39-46CrossRefPubMedGoogle Scholar
  39. Hutchinson, N., Nagarkar, S., Aitchison, J.C. and Williams, G.A. (2006) Microspatial variation in marine biofilm abundance on intertidal rock surfaces. Aquat. Microb. Ecol. 42, 187-197.CrossRefGoogle Scholar
  40. Johnson, D.B. (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol. Ecol. 27, 307-317.Google Scholar
  41. Korte, V.L. and Blinn, D.W. (1983) Diatom colonization on artificial substrata in pool and riffle zones studied by light and scanning electron microscopy. J. Phycol. 19, 332-341CrossRefGoogle Scholar
  42. Lessmann, D., Fyson, A. and Nixdorf, B. (2000) Phytoplankton of the extremely acidic mining lakes of Lusatia (Germany) with pH < 3. Hydrobiologia 433, 123-128.CrossRefGoogle Scholar
  43. Locke, A. (1992) Factors influencing community structure along stress gradients: Zooplankton responses to acidification. Ecology 73, 903-909.CrossRefGoogle Scholar
  44. López-Archilla, A.I. and Amils, R. (1999) A comparative ecological study of two acidic rivers in SW, Spain. Microb. Ecol. 38, 146-156.CrossRefGoogle Scholar
  45. López-Archilla, A.I., Marín, I. and Amils, R. (2001) Microbial community composition and ecology of an acidic aquatic environment: The Tinto river, Spain. Microb. Ecol. 41, 20-35.Google Scholar
  46. López-Archilla, A.I., González, A.E., Terrón, M.C. and Amils, R. (2005) Diversity and ecological relationships of the fungal populations of an acidic river of Southwestern Spain: The Tinto River. Can. J. Microbiol. 50, 923-934.CrossRefGoogle Scholar
  47. Mason, A.Z. and Jenkins, K.D. (1995) Eh-pH diagrams for geochemistry. In: Metal Speciation and Bioavailability in Aquatic Ecosystems. John Wiley & Sons Ltd., Chichester, England, pp. 236-258.Google Scholar
  48. Messerli, M.A., Amaral-Zettler, L.A., Zettler, E., Junh, S.K., Smith, P.J. and Sogin, L. (2005). Life at acidic pH imposes an increased energetic cost for a eukaryotic acidophile. J. Exp. Biol. 208, 2569-2579.CrossRefPubMedGoogle Scholar
  49. Moller, S., Sternberg, C., Andersen, J.B., Christensen, B.B., Ramos, J.L., Givskov, M. and Molin, S. (1998) In situ gene expression in mixed-culture biofilms: Evidence of metabolic interactions between community members. Appl. Environ. Microbiol. 64, 721-732.PubMedGoogle Scholar
  50. Nassiri, Y., Wery, J., Mansot, J.L. and Ginsburguer-Vogel, T. (1997) Cadmium bioaccumulation in Tetraselmis suecica: An electron Energy Loss Spectroscopy (EELS) study. Arch. Environ. Contam. Toxicol. 33, 156-161.CrossRefPubMedGoogle Scholar
  51. Niederlehner, B.R. and Cairns, J. (1990) Effects ofincreasing acidity on aquatic protozoan communi-ties. Water, Air Soil Pollut. 52, 183-196.CrossRefGoogle Scholar
  52. Nixdorf, B., Mischke, U. and Lessmann, D. (1998) Chrysophytes and Chlamydomonads: Pioneer colonists in extremely acidic mining lakes (pH < 3) in Lusitania (Germany). Hydrobiologia 369/370, 315-327.CrossRefGoogle Scholar
  53. Nordstrom, D.K. and Southam, G. (1997) Geomicrobiology of sulphide mineral oxidation. In: J.F. Banfield and K.H. Nealson (eds.) Geomicrobiology: Interactions Between Microbes and Minerals. Vol 35, Mineralogical Society of America, Washington DC, pp. 361-390.Google Scholar
  54. Nordstrom, D.K. and Alpers, C.N. (1999) Negative pH, efflorescent mineralogy and consequences from environmental restoration at the Iron Mountain Superfund site, California. Proc. Natl. Acad. Sci. U.S.A. 96, 3455-3462.CrossRefGoogle Scholar
  55. Norton, T., Pope, J., Veltkamp, C., Banks, B., Howard, C. and Hawkins, S. (1998) Using confocal laser scanning microscopy, scanning electron microscopy and phase contrast light microscopy to examine marine biofilms. Aquat. Microb. Ecol. 16, 199-204.CrossRefGoogle Scholar
  56. Olaveson, M.M. and Nalewajko, C. (1994) Acid rain and freshwater algae. Arch. Hydrobiol. Beih. 42, 99-123.Google Scholar
  57. Packroff, G. (2000) Protozooplankton in acidic mining lakes with special respect to ciliates. Hydrobiologia 433, 157-166.CrossRefGoogle Scholar
  58. Rai, L.C., Jensen, T.E. and Rachlin, J.W. (1990) A morphometric and X-ray energy dispersive approach to monitoring pH-altered cadmium toxicity in Anabaena flos-aquae. Arch. Environ. Contam. Toxicol. 19, 479-487.CrossRefPubMedGoogle Scholar
  59. Sabater, S., Buchaca, T., Cambra, J., Catalan, J., Guasch, H., Ivorra, N., Muñoz, I., Navarro, E., Real, M. and Romaní, A. (2003) Structure and function of benthic algal communities in an extremely acid river. J. Phycol. 39, 481-489.CrossRefGoogle Scholar
  60. Sanchez-España, J., López, E., Santofimia, E., Aduvire, O., Reyes, J. and Berettino, D. (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications. Appl. Geochem. 20, 1320-1356.CrossRefGoogle Scholar
  61. Schopf, J.W. and Walter. M.R. (1982) Origin and early evolution of cyanobateria: The geological evi-dence, In: N.G. Carr and B.A. Whitton (eds.) The Biology of Cyanobacteria. Oxford. Blackwell Sci. Publishers, pp. 543-564.Google Scholar
  62. Seckbach, J. (1999) The cyanidiophyceae: Hot spring and acidophilic algae. In: J. Seckbach (ed.) Enigmatic Microorganisms and Life in Extreme Environments. Kluwer Acadamic Publishers, The Netherlands, pp. 427-435.Google Scholar
  63. Sutherland, I.W. (1999) Biofilms exopolysaccharides. In: J. Wingender, T.R. Neu, H.C. Fleming (eds.) Microbial Extracellular Polymeric Substances, Springer-Verlag, Berlin, Germany, pp. 73-92.Google Scholar
  64. Taylor, I.S., Paterson, D.M. and Mehlert, A. (1999) The quantitative variability and monosaccharide composition of sediment carbohydrates associated with intertidal diatom assemblages. Biogeochemistry 45, 303-327.Google Scholar
  65. Tolker-Nielsen, T. and Molin, S. (2000) Spatialorganization of microbial biofilm communities. Microb. Ecol. 40, 75-84.PubMedGoogle Scholar
  66. Visviki, I. and Rachlin, J.W. (1993) Acute and chronic exposure of Dunaliella salina and Chlamydomonas bullosa to copper and cadmium: Effects on growth. Arch. Environ. Contam. Toxicol. 26, 149-153.Google Scholar
  67. Walton, K.C. and Johnson, D.B. (1992) Microbiological and chemical characteristics of an acidic stream draining a disused copper mine. Environ. Pollut. 76,169-175.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Angeles Aguilera
    • 1
  • Linda Amaral-Zettler
    • 2
  • Virginia Souza-Egipsy
    • 1
  • Erik Zettler
    • 3
    • 4
  • Ricardo Amils
    • 1
    • 4
  1. 1.Centro de AstrobiologíaInstituto Nacional de Técnica AeroespacialTorrejón de ArdozSpain
  2. 2.Marine Biological LaboratoryWoods HoleUSA
  3. 3.Sea Education AssociationWoods HoleUSA
  4. 4.Centro de Biología Molecular (UAM-CSIC)Universidad Autónoma de MadridCanto BlancoSpain

Personalised recommendations