The Thermophilic Cyanobacteria of the Zerka Ma'in Thermal Springs in Jordan

  • Danny Ionescu
  • Aharon Oren
  • Muna Y. Hindiyeh
  • Hanan I. Malkawi
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

Specialized macro- and microorganisms inhabit the springs, each adapted to its habitat, and the cyanobacteria form a prominent part of these biota. Hot springs worldwide are inhabited by dense communities of cyanobacteria adapted to life at high temperatures. The most thermophilic microorganisms known thrive at temperatures above 110º C (Blöchl et al., 1997; Kashefi and Lovley, 2003). However, a temperature around 74º C appears to be the upper limit for photosynthesis (Castenholz, 1969; Brock, 1978). The cyanobacteria most tolerant to high temperatures are unicellular forms (Thermosynechococcus), which thrive in North America (e.g., the hot springs of Yellowstone), Japan and the eastern Mediterranean (Castenholz, 1969) but filamentous cyanobacteria also abound in hot springs worldwide (Copeland, 1936; Castenholz, 1969, 1984, 1996; Brock, 1978).


Enrichment Culture Thermal Spring Filamentous Cyanobacterium Synechococcus Elon Gatus nifH Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abu Ajamieh, M. (1980) The Geothermal Resources of Zerqa Ma’in and Zara. The Hashemite Kingdom of Jordan, Geological Survey and Bureau of Mines, Natural Resources Authority, Amman, 82 pp.Google Scholar
  2. Abu Ajamieh, M. (1989) Mineral Resources of Jordan. The Hashemite Kingdom of Jordan, Ministry of Energy and Mineral Resources, Natural Resources Authority, Amman, 149 pp.Google Scholar
  3. Blanckenhorn, M. (1912) Naturwissenschaftliche Studien am Toten Meer und im Jordanthal. Bericht über eine im Jahre 1908 (im Auftrage S.M. des Sultans der Türkei Abdul Hamid II. und mit Unterstützung der Berliner Jagor-Stiftung) unternommene Forschungsreise in Palästina. R. Friedländer & Sohn, Berlin.Google Scholar
  4. Blöchl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H.W., and Stetter, K.O. (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113°C. Extremophiles 1: 14-21.CrossRefPubMedGoogle Scholar
  5. Brock, T.D. (1978) Thermophilic microorganisms and life at high temperatures. Springer-Verlag, Berlin.Google Scholar
  6. Brown, I.I., Mummey D., and Cooksey, K.E. (2005) A novel cyanobacterium exhibiting an elevated tolerance for iron. FEMS Microbiol. Ecol. 52: 307-314.Google Scholar
  7. Castenholz, R.W. (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol. Rev. 33: 476-504.PubMedGoogle Scholar
  8. Castenholz, R.W. (1977) The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park. Microb. Ecol. 3: 79-105.Google Scholar
  9. Castenholz, R.W. (1984) Composition of hot spring microbial mats: a summary. In: Y. Cohen, R.W. Castenholz, and H. Halvorson (eds.), Microbial Mats: Stromatolites. Alan R. Liss, New York, pp. 101-119.Google Scholar
  10. Castenholz, R.W. (1996) Endemism and biodiversity of thermophilic cyanobacteria. Nova Hedwigia Beih. 112: 33-47.Google Scholar
  11. Copeland, J.J. (1936) Yellowstone thermal Myxophyceae. Ann. N. Y. Acad. Sci. 36: 1-232.CrossRefGoogle Scholar
  12. Deranieh, R.M. (1990) Isolation and Characterization of Gliding Filamentous Phototrophic Bacteria from the Zara Hot Springs. M.Sc. Thesis, the University of Jordan, Amman.Google Scholar
  13. Donner, H. (1963) Kallirrhoë. Das Sanatorium Herodes’ des Großen. Zeitschrift des deutschen Palästinavereins 79: 59-89.Google Scholar
  14. Dor, I. (1967) Algues des sources thermales de Tiberiade. Sea Fish. Res. Sta. Bull. Haifa 48: 3-29.Google Scholar
  15. Fogg, G.E. (1952) Studies on nitrogen fixation by blue-green algae II. Nitrogen fixation by Mastigocladus laminosus Cohn. J. Exp. Bot. 2: 117-120.CrossRefGoogle Scholar
  16. Frémy, P., and Rayss, T. (1938) Algues des sources thermales de Kallirrhoe (Transjordanie). Palest. J. Bot. Jerusalem Ser. 1: 27-34.Google Scholar
  17. Kashefi, K., and Lovley, D.R. (2003) Extending the upper temperature for life. Science 301: 934.CrossRefPubMedGoogle Scholar
  18. Khoury, H., Salameh, E., and Udluft, P. (1984) On the Zerka Ma’in (Therma Kallirrhoes) traver-tine/Dead Sea (hydrochemistry, geochemistry and isotopic composition). Neues Jahrb. Geol. Paläontol. Mh. 8: 472-484.Google Scholar
  19. Nierzwicki-Bauer, S.A., Balkwill, D.L., and Stevens, S.E. Jr. (1984) Heterocyst differentiation in the cyanobacterium Mastigocladus laminosus. J. Bacteriol. 157: 514-525.PubMedGoogle Scholar
  20. Pomati, F., Burns, B.P., and Neilan, B.A. (2004) Identification of an Na+-dependent transporter asso-ciated with saxitoxin-producing strains of the cyanobacterium Anabaena circinalis. Appl. Environ. Microbiol. 70: 4711-4719.CrossRefPubMedGoogle Scholar
  21. Rimawi, O., and Salameh, E. (1988) Hydrochemistry and groundwater system of the Zerka Ma’in-Zara thermal field, Jordan. J. Hydrol. 98: 147-163.CrossRefGoogle Scholar
  22. Seetzen, U.J. (1854) Ulrich Jasper Seetzen’s Reisen durch Syrien, Palästina, Phönicien, die Transjordan-Länder, Arabia Petraea und Unter-Aegypten. Ed. F. Kruse. 2nd Band. G. Reimer, Berlin.Google Scholar
  23. Stanier, R.Y., Kunisawa, R., Mandel, M., and Cohen-Bazire, G. (1971) Purification and properties of unicellular cyanobacteria (order Chroococcales). Bacteriol. Rev. 35: 171-205.PubMedGoogle Scholar
  24. Stevens, S.E. Jr., Nierzwicki-Bauer, S.A., and Balkwill, D.L. (1985) Effect of nitrogen starvation on the morphology and ultrastructure of the cyanobacterium Mastigocladus laminosus. J. Bacteriol. 161: 1215-1218.PubMedGoogle Scholar
  25. Stewart, W.D.P. (1970) Nitrogen fixation by blue-green algae in Yellowstone thermal areas. Phycologia 9: 261-268.Google Scholar
  26. Swareih, A. (2000) Geothermal energy resources in Jordan, country update report. Proceedings World Geothermal Congress. Kyushu-Tokohu, Japan.Google Scholar
  27. Ward, D.M., Weller, R., and Bateson, M.M. (1990) RNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345: 63-65.CrossRefPubMedGoogle Scholar
  28. Ward, D.M., Ferris, M.J., Nold, S.C., Bateson, M.M., Kopczynski, E.D., and Ruff-Roberts, A.L. (1994) Species diversity in hot spring microbial mats as revealed by both molecular and enrich-ment culture approaches - relationship between biodiversity and community structure. In: L.J. Stal and P. Caumette (eds.), Microbial Mats. Structure, Development, and Environmental Significance. Springer-Verlag, Berlin, pp. 33-44.Google Scholar
  29. Ward, D.M., and Castenholz, R.W. (2000) Cyanobacteria in geothermal habitats. In: B.A. Whitton and M. Potts (eds.), The Ecology of Cyanobacteria. Their Diversity in Time and Space. Kluwer Academic Publishers, Dordrecht, pp. 37-59.Google Scholar
  30. Weller, R., Bateson, M.M., Heimbuch, B.K., Kopczinski, E.D., and Ward, D.M. (1992) Uncultivated cyanobacteria, Chloroflexus-like inhabitants, and spirochete-like inhabitants of a hot spring microbial mat. Appl. Environ. Microbiol. 58: 3964-3969.PubMedGoogle Scholar
  31. Wickstrom, C.E. (1980) Distribution and physiological determinants of blue-green algal nitrogen fix-ation along a thermogradient. J. Phycol. 16: 436-443.CrossRefGoogle Scholar
  32. Zehr, J.P., Mellon, M.T., and Hiorns, W.D. (1997) Phylogeny of cyanobacterial nifH genes: evolution-ary implications and potential applications to natural assemblages. Microbiology 143: 1443-1450.CrossRefPubMedGoogle Scholar
  33. Zeng, Y.B., Ward, D.M., Brassell, S.C., and Eglinton, G. (1992) Biogeochemistry of hot spring envi-ronments.2. Lipid compositions of Yellowstone(Wyoming, USA) cyanobacterial and Chloroflexus mats. Chem. Geol. 95: 327-345.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Danny Ionescu
    • 1
  • Aharon Oren
    • 1
  • Muna Y. Hindiyeh
    • 2
  • Hanan I. Malkawi
    • 3
  1. 1.Department of Plant and Environmental SciencesThe Hebrew University of JerusalemIsrael
  2. 2.Department of Environmental SciencesJordan University of Science & TechnologyJordan
  3. 3.Department of Biological SciencesYarmouk UniversityJordan

Personalised recommendations