Diversity of the Cosmopolitan Thermophile Mastigocladus laminosus at Global, Regional and Local Scales

  • Scott R. Miller
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

A recent theme in the study of microbial diversity has been the issue of whether and how the genetic and phenotypic variation of microorganisms is distributed along a geographic transect. Population genetic theory and the results of experimental evolution studies in the laboratory (e.g., Wright, 1931; Atwood et al., 1951; Bennett and Lenski, 1993) suggest that spatially structured microbial populations in nature should rapidly diverge from each other, provided that migratory gene flow among them is low, thereby creating geographic patterns of variation. Recent reports confirm that divergence of geographically isolated populations indeed outpaces the homogenization of genetic variation by migration, indicating the presence of dispersal barriers for microorganisms (e.g., Miller and Castenholz, 2000; Papke et al., 2003; Whitaker et al., 2003; Miller et al., 2006). These observations run counter to the longstanding idea that the abundance of a microorganism at a location is not limited by dispersal but is determined solely by environmental factors (Baas- Becking, 1934), a view that has been recently championed for eukaryotic microorganisms on the basis of morphological criteria (Finlay, 2002). Here, I will summarize our recent investigations of the biogeography of the moderately thermophilic, filamentous cyanobacterium, Mastigocladus (Fischerella) laminosus.

Keywords

Biomass Migration Steam Nitrite Photosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atwood, K. C., Schneider, L. K. and Ryan, F. J. (1951). Periodic selection in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 37: 146-155.CrossRefPubMedGoogle Scholar
  2. Baas-Becking, L. G. M. (1934). Geologie of Inleiding Tot de Mileau-Kunde. W. P. van Stokum, The Hague, The Netherlands.Google Scholar
  3. Bennett, A. F. and Lenski, R. E. (1993). Evolutionary adaptation to temperature. II. Thermal niches of experimental lines of Escherichia coli. Evolution 47: 1-12.CrossRefGoogle Scholar
  4. Brock, T. D. (1978). Thermophilic microorganisms and life at high temperatures, Springer-Verlag, New York.Google Scholar
  5. Castenholz, R. W. (1972). The occurrence of the thermophilic blue-green alga, Mastigocladus laminosus, on Surtsey in 1970. The Surtsey Progress Report VI: 14-19.Google Scholar
  6. Castenholz, R. W. (1978). The biogeography of hot spring algae through enrichment cultures. Mitt. Int. Verein. Limnol. 21: 296-315.Google Scholar
  7. Castenholz, R. W. (1996). Endemism and biodiversity of thermophilic cyanobacteria. Nova Hedwigia Beih. 112: 33-47.Google Scholar
  8. Collier, J. L. and Grossman, A. R. (1992). Chlorosis induced by nutrient deprivation in Synechococcus sp. strain PCC 7942: not all bleaching is the same. J. Bacteriol. 174: 4718-4726.PubMedGoogle Scholar
  9. Excoffier, L., Smouse, P. E. and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131: 479-491.PubMedGoogle Scholar
  10. Hughes Martiny, J. B., Bohannan, B. J. M., Brown, J. H., Colwell, R. K., Fuhrman, J. A., Green, J. L., Horner-Devine, M. Claire, Kane, M., Adams Krumins, J., Kuske, C. R., Morin, P. J., Naeem S., Øvreås, L., Reysenbach, A.-L., Smith, V. H. and Staley, J. T. (2006). Microbial biogeography: putting microorganisms on the map. Nature Rev. Microbiol. 4: 102-112.Google Scholar
  11. Finlay, B. (2002). Global dispersal of free-living microbial species. Science 296: 1061-1063.CrossRefPubMedGoogle Scholar
  12. Hernández-Muñiz, W. and Stevens, S. E. Jr. (1987). Characterization of the motile hormogonia of Mastigocladus laminosus. J. Bacteriol. 169: 218-223.PubMedGoogle Scholar
  13. Miller, S. R. and Castenholz, R. W. (2000). Evolution of thermotolerance in hot spring cyanobacte-ria of the genus Synechococcus. Appl. Environ. Microbiol. 66: 4222-4229.CrossRefPubMedGoogle Scholar
  14. Miller, S. R., Purugganan, M. D. and Curtis, S. E. (2006). Molecular population genetics and pheno-typic diversification of two populations ofthe thermophilic cyanobacterium Mastigocladus laminosus. Appl. Environ. Microbiol. 72: 2793-2800.CrossRefPubMedGoogle Scholar
  15. Papke, R. T., Ramsing, N. B., Bateson, M. M. and Ward, D. M. (2003). Geographic isolation in ther-mophilic cyanobacteria. Environ. Microbiol. 5: 650-659.CrossRefPubMedGoogle Scholar
  16. Posada, D. and Crandall, K. A. (2001). Intraspecific gene genealogies: trees grafting into networks. Trends Ecol. Evol. 16: 37-45.CrossRefPubMedGoogle Scholar
  17. Ramírez, M. E., Hebbar, P. B., Zhou, R., Wolk, C. P. and Curtis, S. E. (2005). Anabaena sp. strain PCC 7120 gene devH is required for synthesis of the heterocyst glycolipid layer. J. Bacteriol. 187: 2326-2331.CrossRefPubMedGoogle Scholar
  18. Ward, D. M., Ferris, M. J., Nold, S. C. and Bateson, M. M. (1998). A natural view of microbial diver-sity within hot spring cyanobacterial mat communities. Microbiol. Mol. Biol. Rev. 62: 1353-1370.PubMedGoogle Scholar
  19. Whitaker, R. J., Grogan, D. W. and Taylor, J. W. (2003). Geographic barriers isolate endemic popula-tions of hyperthermophilic Archaea. Science 301: 976-978.CrossRefPubMedGoogle Scholar
  20. Wright, S. (1931). Evolution in Mendelian populations. Genetics 16: 97-159.PubMedGoogle Scholar
  21. Yu, N., Jensen-Seaman, M. I., Chemnick, L., Ryder, O. and Li, W.-H. (2004). Nucleotide diversity in gorillas. Genetics 166: 1375-1383.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Scott R. Miller
    • 1
  1. 1.Division of Biological SciencesThe University of MontanaMissoulaUSA

Personalised recommendations