Advertisement

Cyanidiophyceae

Looking Back–Looking Forward
  • Gabriele Pinto
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

An Italian scientist, Giuseppe Meneghini (1839) (Fig. 1) was the first to study and describe the thermo-acidophilic algae inhabiting the sulphur hot-spring of Acquasanta (Ascoli Piceno, Italy). He observed “small and very small globules” (0.2–2.0 µm) and he proposed the new species Coccochloris orsiniana (Cyanophyta) without any diagnosis.

In the following 100 years, these algae, always considered as one species, captured the interest of many phycologists who tried to clarify their systematic position. Because of their simple morphology and the absence of sophisticated means of investigation, these algae were variously identified as Palmella orsiniana (Chlorophyta) (Kützing, 1849), Chroococcus varius (Tilden, 1898), Protococcus botryoides f. caldarium (Tilden, 1898), Pleurococcus sulphurarius (Chlorophyta) (Galdieri, 1899), Pleurocapsa caldaria (Collins et al., 1901), Palmellococcus thermalis (West, 1904), Pluto caldarius (Copeland, 1936), Cyanidium caldarium (Geitler and Ruttner, 1936), Dermocarpa caldaria (Drouet, 1943) and Rhodococcus caldarius (Hirose, 1958). By using morphometric analyses of field samples, De Luca and Taddei (1970) identified for the first time, two thermo-acidophilic algae (Fig. 2). These were provisionally named Cyanidium caldarium forma A and Cyanidium caldarium forma B. In the early 1980s the Neapolitan school used morphological, physiological and ultrastructural data to invalidate the previous descriptions, and made a definitive revision of the taxonomy of these algae. Two species were formally recognized: Cyanidium caldarium (Tilden) Geitler (Fig. 3) and Galdieria sulphuraria (Galdieri) Merola (Merola et al., 1981) (Fig. 4).

Keywords

Chloroplast Division Mixotrophic Culture Photosynthetic Eukaryote Cyanidioschyzon Merolae Mitochondrial Division 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ciniglia, C., Yoon, H.S., Pollio, A., Pinto, G. and Bhattacharya, D. (2004) Hidden biodiversity of the extremophilic Cyanidiales red algae. Mol. Ecol. 13: 1827-1838.CrossRefPubMedGoogle Scholar
  2. Collins, F.S., Holden, I. and Setchell W.A. (1901). Phycotheca Boreali-Americana. A collection of dried specimens of the algae of North America. Issued by Frank Shipley Collins, Isaac Holden, William Albert Setchell. Fascicle XVIII. Malden, Massachusetts.Google Scholar
  3. Copeland, J.J. (1936). Yellowstone thermal Myxophyceae. Ann. N. Y. Acad. Sci. 36: 1-232.CrossRefGoogle Scholar
  4. De Luca, P. and Taddei R. (1970). Due alghe delle fumarole acide dei Campi Flegrei (Napoli): Cyanidium caldarium? Delpinoa (N.S.) 12/13: 3-8.Google Scholar
  5. De Luca, P., Taddei, R. and Varano L. (1978) Cyanidioschyzon merolae: a new alga of thermal acidic environments. Webbia 33: 37-44.Google Scholar
  6. Drouet, F. (1943) New species and transfers in Myxophyceae. Am. Midl. Nat. 30: 671-674.CrossRefGoogle Scholar
  7. Galdieri, A. (1899) Su di un’alga che cresce intorno alle fumarole della solfatara; nota del Dott. Agostino Galdieri. Rendiconti Reale Accad. Sci. Fis. 5: 160-164.Google Scholar
  8. Garbary, D.J. and Gabrielson, P.W. (1990) Taxonomy and evolution, In: K.M. Cole and R.G. Sheath (eds.) Biology of the Red Algae. Cambridge University Press, Cambridge, pp. 477-498.Google Scholar
  9. Geitler, L. and Ruttner, F. (1936) Die Cyanophyceen der Deutschen limnologische Sunda-Expedition, ihre Morphologie, Systematik und Ökologie. C. Ökologischer Teil. Arch. Hydrobiol. (Stuttgart) Suppl. Bd XIV (Tropische Binnengewässer VI): 553-715.Google Scholar
  10. Hirose, H. (1958) Rearrangement of the systematic position of a thermal alga, Cyanidium caldarium. Bot. Mag. (Tokyo) 71: 347-352.Google Scholar
  11. Kuroiwa, T., Nishida, K., Yoshida, Y., Fujiwara, T., Mori, T., Kuroiwa, H. and Misumi, O. (2006) Structure, function and evolution of the mitochondrial division apparatus. Biochim. Biophys. Acta 1763: 510-521.CrossRefPubMedGoogle Scholar
  12. Kützing, F.T.(1849)(reprint1969). Species algarum. Brockhaus, Leipzig. Reprint A. Asher, Amsterdam. Matsuzaki, M., Misumi, O., Shin, I.T., Maruyama, S., Takahara, M., Miyagishima, S.Y., Mori, T., Nishida, K., Yagisawa, F., Nishida, K., Yoshida, Y., Nishimura, Y., Nakao, S., Kobayashi, T., Momoyama, Y., Higashiyama, T., Minoda, A., Sano, M., Nomoto, H., Oishi, K., Hayashi, H., Ohata, F., Nishizaka, S., Haga, S., Miura, S., Morishita, T., Kabeya, Y., Terasawa, K., Suzuki, Y., Ishii, Y., Asakawa, S., Takano, H., Ohata, N., Kuroiwa, H., Tanaka, K., Shimizu, N., Sugano, S., Sato, N., Nozaki, H., Ogasawara, N., Kohara, Y. and Kuroiwa, T. (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10d. Nature 428: 653-657.Google Scholar
  13. Meneghini, G. (1839). Nuova specie di alga descritta dal Sig. Dott. Giuseppe Meneghini di Padova. Nuovo Giorn. Lett., Sci. 39: 67-68.Google Scholar
  14. Merola, A., Castaldo, R., De Luca, P., Gambardella, R., Musacchio, A., and Taddei, R. (1981) Revision of Cyanidium caldarium. Three species of acidophilic algae. Giorn. Bot. Ital. 115: 189-195.Google Scholar
  15. Seckbach, J.(1994)(ed.) Evolutionary pathways and enigmatic algae: Cyanidium caldarium (Rhodophyta) and related cells. Kluwer, Dordrecht.Google Scholar
  16. Sentsova, O.Y. (1994) The study of Cyanidiophyceae in Russia, In: J. Seckbach (ed.) Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells. Kluwer, Dordrecht, pp. 167-174.Google Scholar
  17. Sloth, J.K., Wiebe, M.G. and Eriksen, N.T. (2006) Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme Microb. Technol. 38: 168-175.Google Scholar
  18. Tilden, J.E. (1898) Observation on some west American thermal algae. Bot. Gaz. 25: 89-105.CrossRefGoogle Scholar
  19. West, G.S. (1904). West Indian freshwater algae. J. Bot. 45: 281-294.Google Scholar
  20. Yoon, H.S., Hackett, J.D., Pinto, G. and Bhattacharya, D. (2002) The single, ancient origin of chromist plastids. Proc. Natl. Acad. Sci. U.S.A. 99: 15507-15512.CrossRefPubMedGoogle Scholar
  21. Yoon, H.S., Müller, K.M., Sheath, R.G., Ott, F. D. and Bhattacharya, D. (2006a) Defining the major lineages of red algae (Rhodophyta). J. Phycol. 42: 482-492.CrossRefGoogle Scholar
  22. Yoon, H.S., Ciniglia C., Wu M., Comeron J., Pinto G., Pollio A., Bhattacharya D. (2006b) Establishment of endolithic populations ofextremophilic Cyanidiales (Rhodophyta). BMC Evolutionary Biology 6:78.CrossRefPubMedGoogle Scholar
  23. Yoshida, Y., Kuroiwa, H., Misumi, O., Nishida, K., Yagisawa, F., Fujawara, T., Nanamiya, H., Kawamura, F. and Kuroiwa, T. (2006) Isolated chloroplast division machinery can actively con-strict after stretching. Science 313: 1435-1438.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Gabriele Pinto
    • 1
  1. 1.Dipartimento delle Scienze Biologiche Sezione di Biologia vegetaleUniversità di Napoli “Federico II”Italy

Personalised recommendations