Effects of Ultraviolet Radiation on Cyanobacteria and their Protective Mechanisms

  • Bagmi Pattanaik
  • Rhena Schumann
  • Ulf Karsten
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

Enhanced solar ultraviolet radiation (UVR) due to stratospheric ozone depletion is a major stress factor for many phototrophic organisms in aquatic and terrestrial ecosystems (Franklin and Forster, 1997). UVR includes the wavelengths below those visible to the human eye. According to the CIE (Commission Internationale de l’Eclairage), the spectral range is divided into three wavebands: 315–400 nm UVA, 280–315 nm UVB and 190–280 nm UVC. UVA is not attenuated by ozone, and hence its fluence rate will be unaffected by any ozone layer reduction reaching aquatic and terrestrial organisms. Increases in UVB have been particularly reported in Antarctica (McKenzie et al., 2003) and the adjacent geographic regions (southern parts of South America and Australia) (Buchdahl, 2002; Deschamps et al., 2004), as well as in more recent years in the Arctic region (Knudsen et al., 2005). UVB exposure is potentially harmful to all living organisms, but especially to photosynthetic organisms due to their requirement for light. UVB represents less than 1% of the total solar radiation reaching the earth’s surface, because it is absorbed partly by the ozone layer. It is particularly this waveband, which is influenced by changing stratospheric ozone concentrations caused by anthropogenic emissions of greenhouse gases, such as chlorinated fluorocarbons (Fraser et al., 1992).

Keywords

Vortex Glutathione Superoxide Catalase Gypsum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adhikary, S.P. and Sahu, J.K. (2000). Survival strategies of cyanobacteria occurring as crust in the rice fields under drought conditions. Ind. J. Microbiol. 40: 53-56.Google Scholar
  2. Bebout, B.M. and Garcia-Pichel, F. (1995). UV-Binduced vertical migrations of cyanobacteria in a microbial mat. Appl. Environ. Microbiol. 61:4215-4222.PubMedGoogle Scholar
  3. Böhm, G.A., Pfleiderer, W., Böger, P. and Scherer, S. (1995). Structure of a novel oligosaccharide mycosporine amino acid ultraviolet A/B sunscreen pigment from the terrestrial cyanobacterium Nostoc commune. J. biol. Chem. 270: 8536-8539.CrossRefPubMedGoogle Scholar
  4. Brenowitz, S. and Castenholz, R.W. (1997). Long-term effects of UV and visible irradiance on natu-ral populations of scytonemin-containing cyanobacterium (Calothrix sp.). FEMS Microbiol. Ecol. 24: 343-352.CrossRefGoogle Scholar
  5. Büdel, B., Karsten, U. and Garcia-Pichel, F. (1997). Ultraviolet-absorbing scytonemin and mycosporine like amino acid derivatives inexposed rock inhabiting cyanobacterial lichens. Oecologia 112: 165-172.CrossRefGoogle Scholar
  6. Büdel, B. (1999). Ecology and diversity of rock-inhabiting cyanobacteria in tropical regions. Eur. J. Phycol. 34: 361-370.CrossRefGoogle Scholar
  7. Buchdahl, J. (2002). Ozone depletion. Available at http://www.ace.mmu.ac.uk/Resources/Fact_Sheets/ Key_Stage_4/Ozone_Depletion/pdf/Ozone_Depletion. Accesed on 22 May 2007.
  8. Burton, G.W. and Ingold, K.U. (1984). Carotene: an unusual type of lipid antioxidant. Science 224: 569-573.CrossRefPubMedGoogle Scholar
  9. Cadenas, E. (1989). Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58: 79-110.CrossRefPubMedGoogle Scholar
  10. Cadoret, J.C., Rousseau, B., Perewoska, I., Sicora, C., Cheregi, O., Vass, I. and Houmard, J. (2005). Cyclic nucleotides, the photosynthetic apparatus and response to a UV-B stress in the cyanobac-terium Synechocystis sp. PCC 6803. J. Biol. Chem. 280: 33935-33944.CrossRefPubMedGoogle Scholar
  11. Campbell, D., Eriksson, M.J., Öquist, G., Gustafsson, P. and Clarke, A.K. (1998). The cyanobac-terium Synechococcus resists UV-B by exchanging photosystem II reaction-center D1 proteins. Proc. Natl. Acad. Sci. U.S.A. 95: 364-369.CrossRefPubMedGoogle Scholar
  12. Canfield, D.E., Sorensen, K.B. and Oren, A. (2004). Biogeochemistry of a gypsum-encrusted micro-bial ecosystem. Geobiology 2: 133-150.CrossRefGoogle Scholar
  13. Castenholz, R.W. (1972). Low temperature acclimation and survival in thermophilic Oscillatoria tere-briformis. In: T.V. Desikachary (ed.) Taxonomy and Biology of Blue-Green Algae. University of Madras, India, pp. 406-418.Google Scholar
  14. Castenholz, R.W. (1997). Multiple strategies for UV tolerance in cyanobacteria. Spectrum 10: 10-16.Google Scholar
  15. Castenholz, R.W. and Garcia-Pichel, F. (2000). Cyanobacterial responses to UV-radiation, In: B.A. Whitton and M. Potts (eds.) The Ecology of Cyanobacteria. Kluwer Academic Publishers, Netherlands, pp. 591-611.Google Scholar
  16. Christensen, B.E., Kjosbakken, J. and Smidsrod, O. (1985). Partial chemical and physical characteri-zation of two extracellular polysaccharides produced by marine periphytic Pseudomonas sp. Strain NCMB 2021. Appl. Environ. Microbiol. 50: 837-845.PubMedGoogle Scholar
  17. Cockell, C.S. and Knowland, J. (1999). Ultraviolet radiation screening compounds. Biol. Rev. 74: 311-345.CrossRefPubMedGoogle Scholar
  18. Deschamps, L., Roff, G., Fraser, P., Klekociuk, A. and Grainger, S. (2004). Ozone and UV September 2004. BMRC Res. Lett. 1: 1-4.Google Scholar
  19. Dillon, J.G., Tatsumi, C.M., Tandingan, P.G. and Castenholz, R.W. (2002). Effect of environmental factors on the synthesis of scytonemin, a UV-screening pigment, in a cyanobacterium (Chroococcidiopsis sp.). Arch. Microbiol. 177: 322-331.CrossRefPubMedGoogle Scholar
  20. Donkor, V.A., Damian, H.A.K and Hader, D.P. (1993). Effects of tropical solar radiation on the motility of filamentous cyanobacteria. FEMS Microbiol. Ecol. 12: 143-148.CrossRefGoogle Scholar
  21. Dunlap, W.C. and Shick, J.M. (1998). Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. J. Phycol. 34: 418-430.CrossRefGoogle Scholar
  22. Dunlap, W.C. and Yamamoto, Y. (1995). Small-molecule antioxidants in marine organisms: antioxi-dant activity of mycosporine-glycine. Com. Biochem. Physiol. 112: 105-114.CrossRefGoogle Scholar
  23. Edge, R., Mc Garvey, D.J. and Truscott, T.G. (1997). The carotenoids as antioxidants: a review. J. Photochem. Photobiol. B: Biol. 41: 189-200.CrossRefGoogle Scholar
  24. Ehling-Schulz, M. and Scherer, S. (1999). UV protection in cyanobacteria. Eur. J. Phycol. 34: 329-338.CrossRefGoogle Scholar
  25. Ehling-Schulz, M., Bilger, W. and Scherer, S. (1997). UV-B induced synthesis of photoprotective pig-ments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J. Bacteriol. 179: 1940-1945.PubMedGoogle Scholar
  26. Ehling-Schulz, M., Schulz, S., Wait, R., Görg, A., and Scherer, S. (2002). The UV-B stimulon of the terrestrial cyanobacterium Nostoc commune comprises early shock proteins and late acclimation proteins. Mol. Microbiol. 46: 827-843.CrossRefPubMedGoogle Scholar
  27. Favre-Bonvin, J., Bernillon, J., Salin, N. and Arpin, N. (1987). Biosynthesis of mycosporines: mycosporine glutaminol in Trichothecium roseum. Phytochemistry 26: 2509-2514.CrossRefGoogle Scholar
  28. Franklin, L.A. and Forster, R.M. (1997). The changing irradiance environment: consequences for marine macrophyte physiology. Eur. J. Phycol. 32: 207-232.Google Scholar
  29. Fraser, P.J., Bouma, W.J., Forgan, B.W., Lehman, P. and Roy, C.R. (1992). The 1992 Antarctic ozone hole. Clean Air 26: 132-133.Google Scholar
  30. Garcia-Pichel, F. and Belnap, J. (1996). Microenvironments and microscale productivity of cyanobac-terial desert crusts. J. Phycol. 32: 774-782.CrossRefGoogle Scholar
  31. Garcia-Pichel, F. and Castenholz, R.W. (1991). Characterization and biological implications of scy-tonemin, a cyanobacterial sheath pigment. J. Phycol. 27: 395-409.CrossRefGoogle Scholar
  32. Garcia-Pichel, F. and Castenholz, R.W. (1993). Occurrence of UV-absorbing mycosporine-like com-pounds among cyanobacterial isolates and an estimate of their screening capacity. Appl. Environ. Microbiol. 59: 163-169.PubMedGoogle Scholar
  33. Garcia-Pichel, F. and Castenholz, R.W. (1994). On the significance of solar ultraviolet radiation for the ecology of microbial mats. In: L.J. Stal and P. Caumette (eds.) Microbial Mats, Structure, Development and Environmental significance, NATO ASI series, Springer-Verlag, Berlin, pp. 77-84.Google Scholar
  34. Garcia-Pichel, F., Mechling, M. and Castenholz, R.W. (1994). Diel migrations of microorganisms within a benthic, hypersaline mat community. Appl. Environ. Microbiol. 60: 1500-1511.PubMedGoogle Scholar
  35. Garcia-Pichel, F., Sherry, N.D. and Castenholz, R.W. (1992). Evidence for a UV-sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloeopsis sp. Photochem. Photobiol. 56: 17-23.CrossRefPubMedGoogle Scholar
  36. Goetz, T., Windhoevel, U., Boeger, P. and Sandmann, G. (1999). Protection of photosynthesis against ultraviolet-B radiation by carotenoids in transformants of the cyanobacterium Synechococcus PCC7942. Plant Physiol. 120: 599-604.CrossRefGoogle Scholar
  37. He, Yu-Ying. and Häder, D.-P. (2002a). Reactive oxygen species and UV-B: effect on cyanobacteria. Photochem. Photobiol. Sci. 1: 729-736.CrossRefPubMedGoogle Scholar
  38. He, Yu-Ying. and Häder, D.-P. (2002b). UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N-acetyl-L-cysteine. J. Photochem. Photobiol. B: Biol. 66: 115-124.CrossRefGoogle Scholar
  39. Helm, R.F., Hung, Z., Edward, D., Leeson, H., Peery, W. and Potts, M. (2000). Structural character-ization of the released polysaccharide of desiccation tolerant Nostoc commune DRH-1. J. Bacteriol. 184: 974-982.CrossRefGoogle Scholar
  40. Hill, D., Keenan, T., Helm, R., Potts, M., Crowe, L. and Crowe, J. (1997). Extracellular polysaccha-ride of Nostoc commune (cyanobacteria) inhibits fusion of membrane vesicles during desiccation. J. Appl. Phycol. 9: 237-248.CrossRefGoogle Scholar
  41. Hughes, K.A. and Lawley, B. (2003). A novel Antarctic microbial endolithic community within gyp-sum crusts. Environ. Microbiol. 5: 555-565.CrossRefPubMedGoogle Scholar
  42. Huovinen, P., Gomez, I. and Lovengreen, C. (2006). A five-year study of solar ultraviolet radiation in southern Chile (39 degrees S): potential impact on physiology of coastal marine algae? Photochem. Photobiol. 82: 515-522.CrossRefPubMedGoogle Scholar
  43. Javor, B.J. and Castenholz, R.W. (1984). Productivity studies of microbial mats, Laguna Guerrero Negro, Mexico. In: Y. Cohen, H. Hulvorson and R.W. Castenholz (eds.) Microbial Mats: Stomatolites. Alan R. Liss. Inc, New York, pp. 149-170.Google Scholar
  44. Jiang, H. and Qiu, B. (2005). Photosynthetic adaptation of a bloom-forming cyanobacterium Microcystis aeruginosa (cyanophyceae) to prolonged UV-B exposure. J. Phycol. 41: 983-992.CrossRefGoogle Scholar
  45. Karsten, U. (2002). Effects of salinity and ultraviolet radiation on the concentration of mycosporine-like amino acids in various isolates of the benthic cyanobacterium Microcoleus chthonoplastes. Phycol. Res. 50: 129-134.CrossRefGoogle Scholar
  46. Karsten, U. and Garcia-Pichel, F. (1996). Carotenoids and mycosporine-like amino acid compounds in members of the genus Microcoleus (cyanobacteria): a chemosystematic study. Syst. Appl. Microbiol. 19: 285-294.Google Scholar
  47. Karsten, U., Maier, J. and Garcia-Pichel, F. (1998). Seasonality in UV-absorbing compounds of cyanobacterial mat communities from an intertidal mangrove flat. Aqua. Micro. Ecol. 16: 37-44.CrossRefGoogle Scholar
  48. Kerfeld, A.C. (2004). Water-soluble carotenoid proteins of cyanobacteria. Arch. Biochem. Biophys. 430: 2-9.CrossRefPubMedGoogle Scholar
  49. Knudsen, B.M., Jonch-Sorensen, H., Eriksen, P., Johansen, B.J. and Bodeker, G.E. (2005). UV radia-tion below an Arctic vortex with severe ozone depletion. Atmos. Chem. Phys. Discuss. 5: 4679-4700.Google Scholar
  50. Kovacik, L. (2000). Cyanobacteria and algae as agents of biodeterioration of stone substrata of his-torical buildings and other cultural monuments, In: S. Choi, and M. Suh (eds.) Proceedings of the New Millenium International forum on conservation of cultural property. Kongju National University, Kongju, Korea, pp. 44-56.Google Scholar
  51. Kruschell, C. and Castenholz, R.W. (1998). The effect of solar UV and visible irradiance on the ver-tical movements of cyanobacteria in microbial mats of hypersaline waters. FEMS Microbiol. Ecol. 27: 53-72.CrossRefGoogle Scholar
  52. Kumar, A., Sinha, R.P. and Häder, D.-P. (1996). Effects of UV-B on enzymes of nitrogen metabolism in the cyanobacterium Nostoc sp. J. Plant. Physiol. 148: 86-91.Google Scholar
  53. Kumar, A., Tyagi, M.B., Jha, P.N., Srinivas, G. and Singh, A. (2003). Inactivation of cyanobacterial nitrogenase after to ultraviolet-B radiation. Curr. Microbiol. 46: 380-384.CrossRefPubMedGoogle Scholar
  54. Lakatos, M., Bilger, W. and Büdel, B. (2001). Carotenoid composition of terrestrial cyanobacteria: response to natural light conditions in open rock habitats in Venezuela. Eur. J. Phycol. 36: 367-375.CrossRefGoogle Scholar
  55. Lesser, M.P. and Stochaj, W.R. (1990). Photoadaptation and protection against active forms of oxy-gen in the symbiotic prokaryote prochloron-sp and its ascidian host. Appl. Environ. Microbiol. 56: 1530-1535.PubMedGoogle Scholar
  56. Levine, E. and Thiel, T. (1987). UV-inducible DNA repair in the cyanobacteria Anabaena sp. J. Bacteriol. 169: 3988-3993.PubMedGoogle Scholar
  57. Maeda, H., Sakuragi, Y., Bryant, D.A. and DellaPenna D. (2005). Tocopherols protect Synechocystis sp. strain PCC 6803 from lipid peroxidation. Plant Physiol. 138: 1422-1435.CrossRefPubMedGoogle Scholar
  58. Masaki, K., Dunlap, W.C., Yamamoto, Y., Karube, I., Larsen, R.M. and Matsukawa, R. (1996). A natural antioxidant and its production process. Toyo Suisan Kaisha Pty. Ltd. Japanese Patent Application No. 9604230.Google Scholar
  59. Máté, Z., Sass, L., Szekeres, M., Vass, I. and Nagy, F. (1998). UV-B-induced differential transcription of psbA genes encoding the D1 protein of photosystem II in the cyanobacterium Synechocystis 6803. J. Biol. Chem. 273: 17439-17444.CrossRefPubMedGoogle Scholar
  60. Mazor, G., Kidron, G.J., Vonshak, A. and Abeliovich, A. (1996). The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol. Ecol. 21: 121-130.CrossRefGoogle Scholar
  61. McKenzie, R.L., Bjorn, L.O., Bais, A. and Iiyas, M. (2003). Changes in biologically active ultraviolet radiation reaching the Earth’s surface. Photochem. Photobiol. Sci. 2: 5-15.CrossRefPubMedGoogle Scholar
  62. Miller, S.R., Wingard, C.E. and Castenholz, R.W. (1998). Effects of visible light and UV radiation on photosynthesis in a population of a hot spring cyanobacterium Synechococcus sp., subjected to high-temperature stress. Appl. Environ. Microbiol. 64: 3893-3899.PubMedGoogle Scholar
  63. Miyake, C., Michihata, F. and Asada, K. (1991). Scavenging of hydrogen peroxide in prokaryotic and eukaryotic algae: acquisition of ascorbate peroxidase during the evolution of cyanobacteria. Plant Cell Physiol. 32: 33-43.Google Scholar
  64. Ng, W.-O., Zentella, R., Wang, Y., Taylor, J.-S.A. and Pakrasi, H.B. (2000). A phrA, the major photore-activating factor in the cyanobacterium Synechocystis sp. strain PCC 6803 codes for a cyclobu-tanepyrimidine-dimer-specific DNA photolyase. Arch. Microbiol. 173: 412-417.CrossRefPubMedGoogle Scholar
  65. Oren, A. (1997). Mycosporine-like amino acids as osmotic solutes in a community of halophilic cyanobacteria. Geomicrobiol. J. 14: 231-240.CrossRefGoogle Scholar
  66. Oren, A., Kühl, M. and Karsten, U. (1995). An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar. Ecol. Prog. Ser. 128: 151-159.CrossRefGoogle Scholar
  67. Pattanaik, B. and Adhikary, S.P. (2002). Blue-green algal flora at some archaeological sites and mon-uments of India. Feddes Repert. 113: 289-300.CrossRefGoogle Scholar
  68. Pattanaik, B. and Adhikary, S.P. (2004). Effects of UV-B irradiation on survival, spectral characteris-tics and nitrogenase activity of cyanobacteria from different habitats. Arch. Hydrobiol. Algol. Stud. 153: 159-173.Google Scholar
  69. Portwich, A. and Garcia-Pichel, F. (2000). A novel prokaryotic UVB photoreceptor in cyanobac-terium Chlorogloeopsis PCC 6912. Photochem. Photobiol. 71: 493-498.CrossRefPubMedGoogle Scholar
  70. Potts, M. and Friedmann, E.I. (1981). Effects of water stress on cryptoendolithic cyanobacteria from hot desert rocks. Arch. Microbiol. 130: 267-271.CrossRefGoogle Scholar
  71. Potts, M. (1994). Desiccation tolerance of prokaryotes. Microbiol. Rev. 58: 755-805.PubMedGoogle Scholar
  72. Proteau, P.J., Gerwick, W.H., Garcia-Pichel, F. and Castenholz, R. (1993). The structure of scytone-min, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49: 825-829.CrossRefPubMedGoogle Scholar
  73. Quesada, A. and Vincent, W.F. (1995). Strategies of adaptation by Antarctic cyanobacteria to ultra-violet radiation. Eur. J. Phycol. 32: 335-342.CrossRefGoogle Scholar
  74. Quesada, A., Vincent, W.F. and Lean, D.R.S. (1999). Community and pigment structure of Arctic cyanobacterial assemblages: the occurrence and distribution of UV-absorbing compounds. FEMS Microbiol. Ecol. 28: 315-323.CrossRefGoogle Scholar
  75. Ramsing, N.B. and Prufert-Bebout, L. (1994). Motility of Microcoleus chthonoplastes subjected to dif-ferent light intensities quantified by digital image analysis. In: L.J. Stal and P. Caumette (eds.) Microbial Mats, Structure, Development and Environmental Significance, NATO ASI series, Springer-Verlag, Berlin, pp. 183-191.Google Scholar
  76. Reynolds, C.S., Oliver, R.L. and Walsby, A.E. (1987). Cyanobacterial dominance: the role of buoy-ancy regulation in dynamic lake environments. N. Z. J. Mar. Freshwater Res. 21: 379-390.CrossRefGoogle Scholar
  77. Rozema, J., Björn, L.O., Bornman, J.F., Gaberscik, A., Häder, D.-P., Trost, T., Germ, M., Klisch, M., Gröniger, A., Sinha, R.P., Lebert, M., He, Y.-Y., Buffoni-Hall, R., de Bakker, N.V.J., van de Staaij, J. and Meijkamp, B.B. (2002). The role of UV-B radiation in aquatic and terrestrial ecosystems-an experimental and functional analysis of the evolution of UV-absorbing com-pounds. J. Photochem. Photobiol. 66: 2-12.CrossRefGoogle Scholar
  78. Sass, L., Spetea, C., Mate, Z., Nagy, F. and Vass, I. (1997). Repair of UV-B induced damage of pho-tosystem II via de novo synthesis of the D1 and D2 reaction centre subunits in Synechocystis sp. PCC6803. Photo. Res. 54: 55-62.CrossRefGoogle Scholar
  79. Scherer, S., Ernst, A., Chen, T.W. and Böger, P. (1984). Rewetting of drought resistant blue-green algae: time course of water uptake and reappearance of respiration, photosynthesis and nitrogen fixation. Oecologia 62: 418-423.CrossRefGoogle Scholar
  80. Scherer, S., Chen, T.W. and Böger, P. (1988). A new UV-A/B protecting pigment in the terrestrial cyanobacterium Nostoc commune. Plant Physiol. 88: 1055-1057.CrossRefPubMedGoogle Scholar
  81. Schüßler, A., Meyer, T., Gehrig, H. and Kluge, M. (1997). Variations of lectin binding sites in extra-cellular glycoconjugates during the life cycle of Nostoc punctiforme, a potentially endosymbiotic cyanobacterium. Eur. J. Phycol. 32: 233-239.CrossRefGoogle Scholar
  82. Shirkly, B., Kovarcik, D.P., Wright, D.J., Wilmoth, G., Prickett, T.F., Helm, R.F., Gregory, E.M. and Potts, M. (2000). Active Fe-containing superoxide dismutase and abundant sodF mRNA in Nostoc commune (cyanobacteria) after years of desiccation. J. Bacteriol. 182: 189-197.CrossRefGoogle Scholar
  83. Sinha, R.P. and Häder, D.-P. (2002). UV-Induced DNA damage and repair: a review. Photochem. Photobiol. Sci. 1: 225-236.CrossRefPubMedGoogle Scholar
  84. Sørensen K.B., Canfield, D.E., Teske, A.P. and Oren, A. (2005). Community composition of a hyper-saline endoevaporitic microbial mat. Appl. Environ. Microbiol. 71: 7352-7365.CrossRefPubMedGoogle Scholar
  85. Stal, L.J. and Krumbein, W.E. (1985). Isolation and characterization of cyanobacteria from a marine microbial mat. Bot. Mar. 28: 351-365.CrossRefGoogle Scholar
  86. Steiger, S., Schaefer, L. and Sandmann, G. (1999). High-light-dependent upregulation of carotenoids and their antioxidative properties in the cyanobacterium Synechocystis PCC 6803. J. Photochem. Photobiol. B: Biology. 52: 14-18.CrossRefGoogle Scholar
  87. Tamaru, Y., Takani, Y., Yoshida, T. and Sakamoto, T. (2005). Crucial role of extracellular polysac-charides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 71: 7327-7333.CrossRefPubMedGoogle Scholar
  88. Tel-or, E., Huflejt, M.E. and Packer, L. (1986). Hydroperoxide metabolism in cyanobacteria. Arch. Biochem. Biophys. 246: 396-402.CrossRefPubMedGoogle Scholar
  89. Tomaselli, L. and Giovannetti, L. (1993). Survival of diazotrophic cyanobacteria in soil. World J. Microbiol. Biotech. 9: 113-116.CrossRefGoogle Scholar
  90. Tripathy, P., Roy, A., Anand, N. and Adhikary, S.P. (1999). Blue-green algal flora on the rock surface of temples and monuments of India. Feddes Repert. 110: 133-144.Google Scholar
  91. Vass, I., Kirilovsky, D., Perewoska, I., Mate, Z., Nagy, F. and Etienne, A.L. (2000). UV-B radia-tion induced exchange of the D1 reaction centre subunits produced from the psbA2 and psbA3 genes in the cyanobacterium Synechocystis sp. PCC 6803. Eur. J. Biochem. 267: 2640-2648.CrossRefPubMedGoogle Scholar
  92. Viczián, A., Máté, Z., Nagy, F. and Vass, I. (2000). UV-B induced differential transcription of psbD genes encoding the D2 protein of Photosystem II in the cyanobacterium Synechocystis 6803. Photo. Res. 64: 257-266.CrossRefGoogle Scholar
  93. Vincent, W.F. and Quesada, A. (1994). Ultraviolet radiation effects on cyanobacteria: implications for Antarctic microbial ecosystems. In: C.S. Weiler and P.A. Penhale (eds.) Ultraviolet Radiation in Antarctica: Measurements and Biological Effects. Antarctic Research Series, American Geophysical Union, Washington, pp. 111-124.Google Scholar
  94. Vincent, W.F. and Roy, S. (1993). Solar ultraviolet-B radiation and aquatic primary production: dam-age, protection and recovery. Environ. Rev. 1: 1-12.Google Scholar
  95. Volkmann, M., Gorbushina, A.A., Kedar, L. and Oren, A. (2006). Structure of euhalothece-362, a novel red-shifted mycosporine-like amino acid, from a halophilic cyanobacterium (Euhalothece sp.). FEMS Microbiol. Lett. 258: 50-54.Google Scholar
  96. Ward, D.M., Tayne, T.A., Anderson, K.L. and Bateson, M.M. (1987). Community structure and interactions among community members in hot spring cyanobacterial mats. Symp. Soc. Gen. Microbiol. 41: 179-210.Google Scholar
  97. Wolfe-Simon, F., Grzebyk, D., Schofield O. and Falkowski, P.G. (2005). The role and evolution of superoxide dismutases in algae. J. Phycol. 41: 453-465.CrossRefGoogle Scholar
  98. Wright, D.J., Smith, S.C., Joardar, V., Scherer, S., Jervis, J., Warren, A., Helm, R.F. and Potts, M. (2005). UV irradiation and desiccation modulate the three-dimensional extracellular matrix of Nostoc commune (cyanobacteria). J. Biol. Chem. 280: 40271-40281.CrossRefPubMedGoogle Scholar
  99. Wu, H., Gao K., Villafane, V.E., Watanabe, T. and Helbling, E.W. (2005). Effects of solar UV radia-tion on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis. Appl. Environ. Microbiol. 71: 5004-5013.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Bagmi Pattanaik
    • 1
  • Rhena Schumann
    • 2
  • Ulf Karsten
    • 2
  1. 1.Department of Limnology of Stratified LakesLeibniz-Institute of Freshwater Ecology and Inland FisheriesGermany
  2. 2.Institute of Biological Sciences, Applied EcologyUniversity of RostockGermany

Personalised recommendations