Advertisement

Psychrophilic Diatoms

Mechanisms for Survival in Freeze–Thaw Cycles
  • Thomas Mock
  • Karen Junge
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

Diatoms are unicellular microalgae that contribute to 20% of the global carbon fixation. This is as much as the carbon fixed by all tropical rainforests combined (Armbrust et al., 2004). Diatoms are found all over the globe, in freshwater and seawater, in hot and cold habitats. Their most distinctive feature is a silicified cell wall (termed frustule) made of hydrated amorphous silica and a small amount of organic material (sugar). The architecture of the frustule is based on silica patterns that are structured on a nano-to-micrometer scale. These nano-patterns can vary from species to species, creating unique morphotypes that are used as taxonomic keys

Keywords

Antifreeze Protein Snow Mold Polar Biol Brine Channel Brine Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, D.J. and Ort, D.R. (2001). Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci. 6: 36-42.CrossRefPubMedGoogle Scholar
  2. Antia, N.J. (1976). Effects of temperature on the darkness survival of marine microplanktonic algae. Microbial Ecol. 3: 41-54.CrossRefGoogle Scholar
  3. Armbrust, E.V., Berges, J.A., Bowler, C., Green, B.R., Martinez, D., Putnam, N.H., Zhou, S., Allen, A.E., Apt, K.E., Bechner, M., Brzezinski, M.A., Chaal, B.K., Chiovitti, A., Davis, A.K., Demarest, M.S., Detter, J.C., Glavina, T., Goodstein, D., Hadi, M.Z., Hellsten, U., Hildebrand, M., Jenkins, B.D., Jurka, J., Kapitonov, V.V., Kröger, N., Lau, W.W., Lane, T.W., Larimer, F.W., Lippmeier, J.C., Lucas, S., Medina, M., Montsant, A., Obornik, M., Parker, M.S., Palenik, B., Pazour, G.J., Richardson, P.M., Rynearson, T.A., Saito, M.A., Schwartz, D.C., Thamatrakoln, K., Valentin, K., Vardi, A, Wilkerson, F.P. and Rokhsar, D.S. (2004). The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306: 79-86.CrossRefPubMedGoogle Scholar
  4. Boczar, B.A. and Palmisano, A.C. (1990). Photosynthetic pigments and pigment-proteins in natural populations of Antarctic sea-ice diatoms. Phycologia 29: 470-477.Google Scholar
  5. Boyd, P.W. (2002). Environmental factors controlling phytoplankton processes in the Southern Ocean J. Phycol. 38: 844-861.CrossRefGoogle Scholar
  6. Bowman, J.P., McCammon, S.A., Brown, M.V., Nichols, D.S. and McMeekin, T.A. (1997). Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 63: 3068-3078.PubMedGoogle Scholar
  7. Brinkmeyer, R., Glöckner, F.-O., Helmke, E. and Amann, R. (2004). Predominance of beta-proteobacteria in summer melt pools on Arctic pack ice. Limnol. Oceanogr. 49: 1013-1021.Google Scholar
  8. Buechel, C. (2003). Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. Biochemistry 42: 13027-13034.CrossRefGoogle Scholar
  9. Cheng, C.H.C. (1998). Evolution of the diverse antifreeze proteins. Curr. Opin. Genet. Dev. 8: 715-720.CrossRefPubMedGoogle Scholar
  10. Cota, G.F. (1985). Photoadaptation of high Arctic ice algae. Nature 315: 219-222.CrossRefGoogle Scholar
  11. DiTullio, G., Garrison, D.L. and Mathot, S. (1998). Dimethylsulphoniopropionate in sea ice algae from the Ross Sea polynya. Antarc. Res. Ser. 73: 139-146.Google Scholar
  12. Doucette, G.J. and Fryxell, G.A. (1983). Thalassiosira antarctica: vegetative and resting stage chemi-cal composition of an ice-related marine diatom. Marine Biol. 78: 1-6.CrossRefGoogle Scholar
  13. Doucet, C.J., Byass, L., Elias, L., Worral, D., Smallwood, M. and Bowles, D.J. (2000). Distribution and characterization of recrystalization inhibitor activity in plant and lichen species from UK and Maritime Antartic. Cryobiology 40: 218-227.CrossRefPubMedGoogle Scholar
  14. Dubinsky, Z., Falkowski, P.G. and Wyman, K. (1986). Light harvesting and utilization in phyto-plankton. Plant Cell Physiol. 27: 1335-1349.Google Scholar
  15. Eicken, H. (1992). The role of sea ice in structuring Antarctic ecosystems. Polar Biol. 12: 3-13.CrossRefGoogle Scholar
  16. Falkowski, P.G. (1980). Light-shade adaptation in marine phytoplankton, in: P.G. Falkowski (ed.) Primary Productivity in the Sea. Plenum Press, New York, pp. 99-119.Google Scholar
  17. Falkowski, P.G. and Chen, Y.B. (2003). Photoacclimation of light harvesting systems in eukaryotic algae, in: B.R. Green and W.W. Parson (eds.) Light-Harvesting Antennas in Photosynthesis. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  18. Fiala, M. and Oriol, L. (1990). Light-temperature interactions on the growth of Antarctic diatoms. Polar Biol. 10: 62: 9-636.Google Scholar
  19. Gleitz, M., Rutgers vd Loeff, M., Thomas, D.N., Dieckmann, G.S. and Millero, F.J. (1995). Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine. Mar. Chem. 51: 81-91.CrossRefGoogle Scholar
  20. Horner, R. and Alexander, V. (1972). Algal populations in Arctic sea ice: an investigation of heterotrophy. Limnol. Oceanogr. 17: 454-458.CrossRefGoogle Scholar
  21. Hoshino, T., Kiriaki, M., Ohgiya, S., Fujiwara, M., Kondo, H., Nishimiya, Y., Yumoto, I. and Tsuda, S. (2003). Antifreeze proteins from snow mold fungi. Can. J. Bot. 81: 1175-1181.CrossRefGoogle Scholar
  22. Janesch, M.G., Krell, A., Mock, T., Kang, J-S. and Raymond, J.A. (2006). Ice-binding proteins from sea ice diatoms (Bacillariophyceae). J. Phycol. 42: 410-416.CrossRefGoogle Scholar
  23. Junge, K., Eicken, H. and Deming, J.W. (2004). Bacterial activity at −2 to −20ºC in Arctic wintertime sea ice. Appl. Environ. Microbiol. 70: 550-557.CrossRefPubMedGoogle Scholar
  24. Junge, K., Imhoff, F., Staley, T. and Deming, J.W. (2002). Phylogenetic diversity of numerically impor-tant Arctic Sea-ice bacteria cultured at subzero temperature. Microbiol Ecol. 43: 315-328.CrossRefGoogle Scholar
  25. Kang, S.H. and Fryxell, G.A. (1992). Fragilariopsis cylindrus (Grunow) Krieger: The most abundant diatom in water column assemblages of Antarctic marginal ice-edge zones. Polar Biol. 12: 609-627.CrossRefGoogle Scholar
  26. Kirst, G.O. and Wiencke, C. (1995). Ecophysiology of polar algae. J. Phycol. 31: 181-199.CrossRefGoogle Scholar
  27. Knight, C.A., Wen, D. and Laursen, R.A. (1995). Nonequilibrium antifreeze peptides and the recrys-tallization of ice. Cryobiology 32: 23-34.CrossRefPubMedGoogle Scholar
  28. Krell, A.(2006). Salt stress tolerance in the psychrophilic diatom Fragilariopsis cylindrus. Dissertation, University of Bremen, Germany.Google Scholar
  29. Krembs, C., Eicken, H., Junge, K., and Deming, J.W. (2002). High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep Sea Res. (Part 1) 49: 2163-2181.CrossRefGoogle Scholar
  30. Maxwell, D.P., Falk, S., Trick, C.G. and Huner N.P.A. (1994). Growth at low temperature mimics high-light acclimation in Chlorella vulgaris. Plant Physiol. 105: 535-543.PubMedGoogle Scholar
  31. Michel, C.L. and Beardall, J. (1996). Inorganiccarbon uptake by an Antarctic sea-ice diatom, Nitzschia frigida. Polar Biol. 16: 95-99.CrossRefGoogle Scholar
  32. Mock, T. and Valentin, K. (2004). Photosynthesis and cold acclimation: molecular evidence from a polar diatom. J. Phycol. 40: 732-741.CrossRefGoogle Scholar
  33. Mock, T. and Hoch, N. (2005). Long-term acclimation of photosynthesis in steady-state cultures of the polar diatom Fragilariopsis cylindrus. Photosynth. Res. 85: 307-317.CrossRefPubMedGoogle Scholar
  34. Mock, T., Krell, A., Gloeckner, G., Kolukisaoglu, U., Valentin, K. (2005). Analysis of expressed sequence tags (ESTs) from the polar diatom Fragilariopsis cylindrus. J. Phycol. 42: 78-85.CrossRefGoogle Scholar
  35. Mock, T and Gradinger, R. (1999). Determination of ice algal production with a new in situ incuba-tion technique. Mar. Ecol. Prog. Ser. 177: 15-26.CrossRefGoogle Scholar
  36. Mock, T. and Kroon, B.M.A. (2002a). Photosynthetic energy conversion under extreme conditions. I. Important role of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatoms. Phytochemistry 61: 41-51.CrossRefPubMedGoogle Scholar
  37. Mock, T. and Kroon, B.M.A. (2002b). Photosynthetic energy conversion under extreme conditions. II. The significance of lipids at low temperature and low irradiances in Antarctic sea ice diatoms. Phytochemistry 61: 53-60.CrossRefPubMedGoogle Scholar
  38. Morgan-Kiss, R., Ivanov, A.G., Williams, J., Khan, M. and Huner, N.P.A. (2002). Differential thermal effects on the energy distribution between photosystem II and photosystem I in thy-lakoid membranes of a psychrophilic and a mesophilic alga. Biochim. Biophys. Acta 1561: 251-265.CrossRefPubMedGoogle Scholar
  39. Morgan-Kiss, R.M., Priscu, J.C., Pocock, T., Gudynaite-Savitch, L. and Huner, N.P.A. (2006). Adaptation and acclimation of photosynthetic microorganisms to permanently cold environ-ments. Microbiol. Mol. Biol. Rev. 70: 222-252.CrossRefPubMedGoogle Scholar
  40. Nishida, I. and Murata, N. (1996). Chilling sensitivity in plants and cyanobacteria: the crucial con-tribution of membrane lipids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 541-568.CrossRefPubMedGoogle Scholar
  41. Palmisano, A.C. and Garrison, D.L. (1993). Microorganisms in Antarctic sea ice, in: El Friedmann (ed.) Antarctic Microbiology. Wiley-Liss, New York, pp. 167-218.Google Scholar
  42. Parker, M.S. and Armbrust, E.V. (2005). Synergistic effects of light, temperature and nitrogen source on transcription of genes for carbon and nitrogen metabolism in the centric diatom Thalassiosira pseudonana (Bacillariophyceae). J. Phycol. 41: 1142-1153.CrossRefGoogle Scholar
  43. Plettner, I. (2002). Streßphysiologie bei antarktischen Diatomeen: Ökophysiologische Untersuchungen zur Bedeutung von Prolin bei der Anpassung an hohe Salinitäten und tiefe Temperaturen. Dissertation, University Bremen, Germany.Google Scholar
  44. von Quillfeldt, C.H. (2004). The diatom Fragilariopsis cylindrus and its potential as an indicator species for cold water rather than for sea ice. Vie Milieu 54: 137-143.Google Scholar
  45. Ralph, P.J., McMinn, A., Ryan, K.G. and Ashworth, C. (2005). Short-term effects of temperature on the photokinetics of microalgae from the surface layers of Antarctic pack ice. J. Phycol. 41: 763-769.CrossRefGoogle Scholar
  46. Ryan, K.G., Ralph, P.J. and McMinn, A. (2004). Photoacclimation of Antarctic bottom ice algal com-munities to lowered salinities during melting. Polar Biol. 27: 679-686.CrossRefGoogle Scholar
  47. Raymond, J.A. and Knight, C.A. (2003). Ice binding, recrystallisation inhibition, and cryoprotective properties of ice-active substances associated with Antarctic sea ice diatoms. Cryobiology 46: 174-181.CrossRefPubMedGoogle Scholar
  48. Reinfelder, J.R., Milligan, A.J. and Morel, F.M.M. (2004). The role of the C4 pathway in carbon accu- mulation and fixation in a marine diatom. Plant Physiol. 135: 2106-2111.CrossRefPubMedGoogle Scholar
  49. Robinson, D.H., Kolber, Z. and Sullivan, C.W. (1997). Photophysiology and photoacclimation in sur-face sea ice algae from McMurdo Sound, Antarctica. Mar. Ecol. Prog. Ser. 147: 243-256.CrossRefGoogle Scholar
  50. Schriek, R. (2000). Effects of light and temperature on the enzymatic antioxidative defense systems in the Antarctic ice diatom Entomoneis kufferathii Manguin. Rep. Polar Res. 349: 1-130.Google Scholar
  51. Spindler, M. (1990). A comparison of Arctic and Antarctic sea ice and the effects of different prop-erties on sea ice biota, in: U. Beil and J. Thiede (eds.) Geophysical History of Polar Oceans: Arctic versus Antarctic. Kluwer Academic Publishers, pp. 173-186.Google Scholar
  52. Streb, P., Shang, W., Feierabend, J. and Bligny, R. (1998). Divergent strategies of photoprotection in high mountain plants. Planta 207: 313-324.CrossRefGoogle Scholar
  53. Shi, H., Lee, B., Wu, S. and Zhu, J. (2003). Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotechnology 21: 81-85.CrossRefPubMedGoogle Scholar
  54. Stoeve, J.C., Serreze, M.C., Fetterer, F., Arbetter, T., Meier, W., Maslanki, J. and Knowles, K. (2005). Tracking the Arctic’s shrinking ice cover: another extreme September minimum in 2004. Geophys. Res. Lett. 32.Google Scholar
  55. Thomas, D.N. and Dieckmann, G.S. (2002). Antarctic sea ice - a habitat for extremophiles. Science 295: 641-644.CrossRefPubMedGoogle Scholar
  56. Thomas, D.N. (2004). Frozen Oceans - The Floating World of Pack Ice. Natural History Museum, London, p. 224.Google Scholar
  57. Tilzer, M.M., Elbrächter, M., Gieske, W.W. and Beese, B. (1986). Light-temperature interactions in the control of photosynthesis in Antarctic phytoplankton. Polar Biol. 5: 105-111.CrossRefGoogle Scholar
  58. Wolff, E.W., Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Littot, G.C., Mulvaney, R., Roethlisberger, R., de Angelis, M., Boutron, C.F., Hansson, M., Jonsell, U., Hutterli, M.A., Lambert, F., Kaufmann, P., Stauffer, B., Stocker, T.F., Steffensen, J.P., Bigler, M., Siggaard-Andersen, M.L., Udisti, R., Becagli, S., Castellano, E., Severi, M., Wagenbach, D., Barbante, C., Gabrielli, P. and Gaspari, V. (2006). Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440: 491-496.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Thomas Mock
    • 1
  • Karen Junge
    • 2
  1. 1.School of OceanographyUniversity of WashingtonWashingtonUSA
  2. 2.Department of Earth and Space SciencesUniversity of WashingtonWashingtonUSA

Personalised recommendations