Advertisement

Cyanobacteria in Antarctic Lake Environments

A Mini-Review
  • S. M. Singh
  • J. Elster
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

The Antarctic habitats are some of the driest and coldest ecosystems on the Earth. Earlier there was a general acceptance that polar deserts harbored little life (Priscu, 1999). But, recent studies have revealed the existence of microbes in: the snow near the South Pole (Carpenter et al., 2000), the 3.5 km deep in Vostok ice (Karl et al., 1999; Priscu et al., 1999a), exposed soils (Wall and Virginia, 1998), sandstones (Friedmann et al., 1993), meltwater ponds (Vincent, 1988), liquid water column of permanently ice-covered lakes (Priscu et al., 1999b), and the ice covers of permanent lake ice (Priscu et al., 1998; Psenner et al., 1999). Most of the microbes found in these habitats are prokaryotic (Vincent, 1988; Gordon et al., 2000; Brambilla et al., 2001). Among these microbes, one of the most important components is the photosynthetically active cyanobacteria. They provide for an adequate quantity of fixed carbon via photosynthesis to drive a well-developed ecosystem (Vincent, 1988). On the contrary, in those habitats where there is a lack of cyanobacteria, biomass production by the addition of new carbon and nitrogen is slowed. Thus, such habitats are poor in biodiversity and also poor in trophic levels. In Antarctic habitats the cyanobacteria are adapted and acclimated to their environment in terms of temperature, freeze/thaw survival photoprotection, as well as light acquisition for photosynthesis (Vincent et al., 1993a, b, c; Tang et al., 1997; Nadeau et al., 1999; Tang and Vincent, 1999; Nadeau and Castenholz, 2000). Though cyanobacteria play a significant role in ecosystem dynamics, only a few of them have been considered true psychrophiles (Tang et al., 1997; Fritsen and Priscu, 1998). They are classified as psychrotolerant or psychrotrophic due to their ability to metabolize near 0ºC and also because their temperature optima for growth are typically above 15ºC. Some of the cyanobacterial groups, for example, Leptolyngbya, Phormidium, Oscillatoria, and Nostoc are cosmopolitan and occur in highly divergent environmental extremes.

Keywords

Particulate Organic Carbon Antarctic Lake Polar Desert Antarctic Habitat Antarctic Research Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, E.E., Priscu, J.C., Fritsen, C.H., Smith, S.R. and Brackman, S.L. (1998) Permanent ice cov-ers of the McMurdo Dry Valley Lakes, Antarctica: bubble formation and metamorphism. In: J.C. Priscu (ed.) Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. Antarctic Research Series, American Geophysical Union, 72, 281-296.Google Scholar
  2. Balter, M. (1999) Did life begin in hot water? Science 280, 31.CrossRefGoogle Scholar
  3. Bonilla, S., Villeneuve, V. and Vincent W.F. (2005) Benthic and planktonic algal communities in a high arctic lake: pigment structure and contrasting responses to nutrient enrichment, J. Phycol. 41, 1120-1130.CrossRefGoogle Scholar
  4. Brambilla, E., Hippe, H., Hagelstein, A., Tindall, B.J. and Stackbrandt, E. (2001) A 16S rDNA diver-sity of cultured and uncultured prokaryotes of a mat sample from Lake Fryxell, McMurdo Dry Valleys, Antarctica, Extremophiles 5, 23-33.Google Scholar
  5. Broady, P.A. (1977a) The Signy Island terrestrial reference sites VII The ecology of the algae site 2, a moss carpet, Br. Antarct. Surv. Bull. 45, 47-62.Google Scholar
  6. Broady, P.A. (1977b) The Signy Island terrestrial reference sites IX. The ecology of the algae site 2, a moss carpet, Br. Antarc. Surv. Bull. 47, 13-29.Google Scholar
  7. Broady, P.A. (1977c) A preliminary survey of the essential algae of the Antarctic Peninsula and South Georgia, Br. Antarct. Surv. Bull. 48, 47-70.Google Scholar
  8. Broady, P.A. (1982) Taxonomy and ecology of algae in a freshwater stream in Taylor Valley, Victoria Land, Antarctica, Arch. Hydrobiol. 32, 331-349.Google Scholar
  9. Bruni, F. and Leopold, A.C. (1991) Glassy state in soybean seeds: relevance to anhydrous biology, Plant Physiol. 96, 660-663.CrossRefPubMedGoogle Scholar
  10. Burkins, M.B., Virginia, R.A., Chamberlain, C.P. and Wall, D.H. (2000) Origin and distribution of soil organic matter in Taylor Valley, Antarctica, Ecology 81, 2377-2391.Google Scholar
  11. Burkins, M.B., Virginia, R.A. and Wall, D.H. (2001) Organic carbon cycling in Taylor Valley, Antarctica: quantifying soil reservoirs and soil respiration, Glob. Change Biol. 7, 113-125.CrossRefGoogle Scholar
  12. Carpenter, E.J., Lin, S. and Capone, D.G. (2000) Bacterial Activity in South Pole snow, Appl. Environ. Microbiol. 66, 4514-4517.CrossRefPubMedGoogle Scholar
  13. Castenholz, R.W. (1982) Motility and taxes. In: N.B. Carr and B.A. Witton (eds.) The Biology of Cyanobacteria, Botanical Monographs, Vol. 19, Blackwell Scientific Publishers, Oxford, pp. 9-45.Google Scholar
  14. Castenholz, R.W., Jorgensen, B.B., D`Amelio, E. and Bauld, J. (1991) Photosynthetic and behavioral versatility of the cyanobacterium Oscillatoria boryana in a sulfide-rich microbial mat, FEMS Microbiol. Ecol. 86, 43-58.Google Scholar
  15. Comte, K., Sˇabacká, M., Cadel, S., Elster, J. and Komárek, J. (2007) Relationship of selected Oscillatorian cyanobacteria isolates from theArctic and the Antarctic. FEMS Microbiol. Ecol. 59 (2), 366-376.Google Scholar
  16. Crowe, J.H., Crowe, L.M. and Chapman, D. (1984) Preservation of membranes in anhydrobiotic organisms: the role of trehalose, Science 223, 701-703.CrossRefPubMedGoogle Scholar
  17. Davey, M.C. and Clarke, K.J. (1991) The spatial distribution of microalgae on Antarctic fellfield soils, Antarct. Sci. 3, 257-263.CrossRefGoogle Scholar
  18. Elster, J. (2002) Ecological classification of terrestrial algae communities of polar environment. In: L. Beyer and M. Bolter (eds.) GeoEcology of Antarctic Ice-Free Coastal Landscapes, Ecological Studies, Vol. 154, Springer, Berlin, pp. 303-326.Google Scholar
  19. Elster, J. and Komárek, O. (2003) Periphyton ecology of two snow-fed streams in the vicinity of H. Arctowski station, King George Island, South Shetlands, Antarctica, Antarct. Sci. 15 (2), 189-201.Google Scholar
  20. Elster, J. and Benson, E.E. (2004) Life in the Polar terrestrial environment with a focus on algae and cyanobacteria. In: B.J. Fuller, N. Lane and E.E. Benson (eds.) Life in Frozen State, CRC Press, London, pp. 111-150.Google Scholar
  21. Eschenmoser, A. (1999) Chemical etiology of nucleic acid structure, Science 284, 2118-2124.CrossRefPubMedGoogle Scholar
  22. Friedmann, E.I., Kappen, L., Meyer, M.A. and Nienow, J.A. (1993) Long-term productivity in the cryptoendolithic microbial community of the Ross Desert, Antarctica, Microb. Ecol. 25, 51-69.CrossRefPubMedGoogle Scholar
  23. Fritsen, C.H. and Priscu, J.C. (1998) Cyanobacterial assemblages in permanent ice covers of Antarctic lakes: distribution, growth rate, and temperature response of photosynthesis, J. Phycol. 34, 587-597.CrossRefGoogle Scholar
  24. Fritsen, C.H., Christian, H. and Priscu, J.C. (1996) Photosynthetic characteristics of cyanobacteria in permanent ice-covers on lakes in the McMurdo Dry Valleys, Antarctica, Antarct. J. US 31, 216-218.Google Scholar
  25. Fritsen, C.H., Adams, E.E., McKay, C.M. and Priscu, J.C. (1998) Permanent ice covers of the McMurdo Dry Valley Lakes, Antarctica: liquid water content. In: J.C. Priscu (ed.) Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. Antarctic Research Series, American Geophysical Union, 72, 269-280.Google Scholar
  26. Fritsen, C.H., Grue, A. and Priscu, J.C. (2000) Distribution of organic carbon and nitrogen in surface soils in the McMurdo Dry Valleys, Antarctica, Polar Biol. 23, 121-128.CrossRefGoogle Scholar
  27. Galtier, N., Tourasse, N. and Gouy, M. (1999) A non-hyperthermophilic common ancestor to extant life forms, Science 283, 220-222.CrossRefPubMedGoogle Scholar
  28. Gordon, D.A., Lanoil, B., Giovannoni, S. and Priscu, J.C. (1996) Cyanobacterial communities asso-ciated with mineral particles in Antarctic lake ice, Antarct. J. US 31, 224-225.Google Scholar
  29. Gordon, D.A., Priscu, J.C. and Giovannoni, S. (2000) Distribution and phylogeny of bacterial com-munities associated with mineral particles in Antarctic lake ice, Microb. Ecol. 39, 197-202.PubMedGoogle Scholar
  30. Grue, A.M., Fritsen, C.H. and Priscu, J.C. (1996) Nitrogen fixation within permanent ice covers on lakes in the McMurdo Dry Valleys, Antarctica, Antarct. J. US 32, 218-220.Google Scholar
  31. Hawes, I. and Schwarz, A.M. (1999) Photosynthesis in an extreme shade environment: benthic micro-bial mats from Lake Hoare, a permanently ice-covered Antarctic lake, J. Phycol. 35, 448-459.CrossRefGoogle Scholar
  32. Hawes, I. and Schwarz, A.M. (2001) Absorption and utilization of irradiance by cyanobacterial mats in two ice-covered Antarctic lakes with contrasting light climates, J. Phycol. 37, 5-15.CrossRefGoogle Scholar
  33. Hawes, I., Howard-Williams, C. and Vincent, W.F. (1992) Desiccation and recovery of Antarctic cyanobacterial mats, Polar Biol. 12, 587-594.CrossRefGoogle Scholar
  34. Hodgson, D.A., Vyverman, W., Verleyen, E., Sabbe, K., Leavitt, P.R., Taton, A., Squier, A.H. and Keely, B.J. (2004) Environmental factors influencing the pigment composition of in situ benthic microbial communities in east Antarctic lakes, Aquat. Microb. Ecol. 37, 247-263.CrossRefGoogle Scholar
  35. Hoffman, P.F. and Schrag, D.P. (2000) Snowball Earth, Sci. Am. 282, 68-75.Google Scholar
  36. Hoffman, P.F., Kaufman, A.J., Halverson, G.P. and Schrag, D.P. (1998) A neo-proterozoic Snowball Earth, Science 281, 1342-1346.CrossRefPubMedGoogle Scholar
  37. Howard-Williams, C., Vincent, L., Brody, P.A. and Vincent, W.F. (1986) Antarctic stream ecosystems: variability in environmental properties and algal community structure, Int. Rev. Gesampten Hydrobiol. 71, 511-544.CrossRefGoogle Scholar
  38. Huber, R., Huber, H. and Stetter, K.O. (2000) Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties, FEMS Microbiol. Rev. 24, 615-623.Google Scholar
  39. Karl, D.M., Bird, D.F., Bjorkman, K., Houlihan, T., Shackelford, R. and Tupas L. (1999) Microorganisms in the Accreted Ice of Lake Vostok, Antarctica, Science 286, 2144-2147.Google Scholar
  40. Kashyap, A.K., Gupta, R.K. and Pandey, K.D. (1998) Check-list of cyanobacteria occurring in Schirmacher Oasis, Antarctica, J. Sci. Res., BHU, Varanasi 47, 171-179.Google Scholar
  41. Knoll, A.H. (1994) Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo, Proc. Natl. Acad. Sci. U.S.A. 91, 6743-6750.CrossRefPubMedGoogle Scholar
  42. Koop, R.E., Kirschvink, J.L., Hilburn, I.A. and Nash, C.Z. (2005) The Paleoproterozoic Snowball Earth: a climatic disaster triggered by the evolution of oxygenic photosynthesis, Proc. Natl. Acad. Sci. U.S.A. 102 (32), 11131-11136.CrossRefGoogle Scholar
  43. Lyons, W.B., Fountain, A., Doran, P., Priscu, J.C. and Neumann, K. (2000) The importance of land-scape position and legacy: the evolution of the Taylor valley Lake District, Antarctica, Freshw. Biol. 43, 355-367.CrossRefGoogle Scholar
  44. Lizotte, M.P. and Priscu, J.C. (1992) Spectral irradiance and bio-optical properties in perennially ice covered lakes of the dry valleys (McMurdo Sound, Antarctica), Antarct. Res. Ser. 57, 1-14.Google Scholar
  45. Margulis, L. and Sagan, D. (1997) Micro-cosmos: Four Billion Years of Microbial Evolution. University of California Press, Berkeley, 304 p.Google Scholar
  46. Miller, M.C., DeOliveira, P. and Gibeau, G.G. (1992) Epilithic diatom community response to years of PO4 fertilisation: Kuparuk River, Alaska (68 N Lat.), Hydrobiologia 240, 103-119.Google Scholar
  47. Moorhead, D.L. and J.C. Priscu (1998) Linkages among ecosystem components within the McMurdo Dry valleys: A synthesis. In: J.C. Priscu (ed.) Ecosystem Dynamics in a Polar Desert: TheMcMurdo Dry Valleys. Antarctic Research Series, American Geophysical Union, 72, 351-364.Google Scholar
  48. Murata, N. and Los, D.A. (1997) Membrane fluidity and temperature perception, Plant Physiol. 115, 875-879.PubMedGoogle Scholar
  49. Nadeau, T. and Castenholz, R.W. (2000) Characterization of psychrophilic oscillatorians (cyanobac-teria) from Antarctic meltwater ponds, J. Phycol. 36, 914-923.CrossRefGoogle Scholar
  50. Nadeau, T. and Castenholz, R.W. (2001) Evolutionary relationships of cultivated Antarctic oscillato-rians (cyanobacteria), J. Phycol. 37, 650-654.CrossRefGoogle Scholar
  51. Nadeau, T., Howard-Williams, C. and Castenholz, R.W. (1999) Effects of solar UV and visible irra-diance on photosynthesis and vertical migration of Oscillatoria sp. (cyanobacteria) in an Antarctic microbial mat, Aquat. Microb. Ecol. 20, 231-243.CrossRefGoogle Scholar
  52. Nelson, K.E., Clayton, R.A., Gill, S.R., Gwinn, M.L., Dodson, R.J., Haft, D.H., Hickey, E.K., Peterson, J.D., Nelson, W.C., Ketchum, K.A., McDonald, L., Utterback, T.R., Malek, J.A., Linher, K.D., Garrett, M.M., Stewart, A.M., Cotton, M.D., Pratt, M.S., Phillips, C.A., Richardson, D., Heidelberg, J., Sutton, G.G., Fleischmann, R.D., Eisen, J.A., White, O., Saltzberg, S.L., Smith, H.O., Venter, J.C. and Fraser, C.M. (1999) Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritime, Nature 399,323-328.CrossRefPubMedGoogle Scholar
  53. Olson, J.B., Steppe, T.F., Litaker, R.W. and Paerl, H.W. (1998) N2-Fixing microbial consortia associ-ated with the Ice Cover of Lake Bonney, Antarctica, Microb. Ecol. 36, 231-238.Google Scholar
  54. Ohtani, S. (1986) Epiphytic algae on moss in vicinity of Syowa station, Antarctica, Mem. Natl. Inst. Polar Res. Special. Issue 44, 2009-2219.Google Scholar
  55. Paerl, H.W. and Priscu, J.C. (1998) Microbial phototrophic, heterotrophic and diazotrophic activities associated with aggregates in the permanent ice cover of Lake Bonney, Antarctica, Microb. Ecol. 36,221-230.CrossRefPubMedGoogle Scholar
  56. Parker, B.C. and Wharton, R.A. (1985) Physiological ecology of blue-green algal Mats (modern stro-matolites) in Antarctic oasis lakes, Arch. Hydrobiol. Suppl. 71, 331-348.Google Scholar
  57. Parker, B.C., Simmons, G.M. Jr., Seaburg, K.G., Cathey, D.D. and Allnutt, F.C.T. (1981) Modern stromatolites in Antarctic Dry Valley lakes, Bioscience 31, 656-661.CrossRefGoogle Scholar
  58. Pederson, K. (1997) Microbial life in deep granitic rock, FEMS Microbiol. Rev. 20, 399-414.CrossRefGoogle Scholar
  59. Pennisi, E. (1998) Genome data shake tree of life, Science 280, 672-674.CrossRefPubMedGoogle Scholar
  60. Pennisi, E. (1999) Is it time to uproot the tree of life? Science 284, 1305-1307.CrossRefPubMedGoogle Scholar
  61. Pinckney, J.L. and Paerl, H.W. (1996) Lake ice algal phototroph community composition and growth rates, Lake Bonney, Dry Valley Lakes, Antarctica, Antarct. J. US 31, 215-216.Google Scholar
  62. Priscu, J.C. (1997) The biogeochemistry of nitrous oxide in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica, Glob. Change Biol. 3, 301-305.CrossRefGoogle Scholar
  63. Priscu, J.C. (1999) Life in the valley of the “dead”, Bioscience 49, 959.CrossRefGoogle Scholar
  64. Priscu, J.C., Fritsen, C.H., Adams, E.E., Giovannoni, S.J., Paerl, H.W., McKay, C.P., Doran, P.T., Gordon, D.A., Lanoil, B.D. and Pinckney J.L. (1998) Perennial Antarctic lake ice: an oasis for life in a Polar desert, Science 280, 2095-2098.CrossRefPubMedGoogle Scholar
  65. Priscu, J.C., Adams, E.E., Lyons, W.B., Voytek, M.A., Mogk, D.W., Brown, R.L., McKay, C.P., Takacs, C.D., Welch, K.A., Wolf, C.F., Kirstein, J.D. and Avci, R. (1999a) Geomicrobiology of sub-glacial ice above Vostok Station, Science 286,2141-2144.CrossRefPubMedGoogle Scholar
  66. Priscu, J.C., Wolf, C.F., Takacs, C.D., Fritsen, C.H., Laybourn-Parry, J., Roberts, E.C. and Lyons W.B. (1999b) Carbon transformations in the water column of a perennially ice-covered Antarctic Lake, Bioscience 49, 997-1008.CrossRefGoogle Scholar
  67. Priscu, J.C., Fritsen, C.H., Adams, E.E., Paerl, H.W., Lisle, J.T., Dore, J.E., Wolf, C.F. and Mikucki, J.A. (2005) Perennial Antarctic lake ice: A refuge for cyanobacteria in an extreme environment. In: J.D. Castello and S.O. Rogers (eds.) Life in Ancient Ice, Princeton Press. p. 22-49.Google Scholar
  68. Psenner, R. and Sattler, B. (1998) Life at freezing point, Science 280, 2073-2074.CrossRefPubMedGoogle Scholar
  69. Psenner, R., Sattler, B., Willie, A., Fritsen, C.H., Priscu, J.C., Felip, M. and Catalan J. (1999) Lake Ice microbial communities in Alpine and Antarctic Lakes. In: P. Schinner and R. Margesin (eds.) Adaptations of Organisms to Cold Environments, Springer-Verlag, pp. 17-31.Google Scholar
  70. Redfield, A.C. (1958) The biological control of chemical factors in the environment, American Scientist, September, pp. 205-221.Google Scholar
  71. ˇ abacká, M. and Elster, J. (2006) Response of cyanobacteria and algae from Antarctic wetland habitats to freezing and desiccation stress, Polar Biology, 30 (1), 31-37.CrossRefGoogle Scholar
  72. Sato, N. (1995) A family of cold-regulated RNA-binding protein genes in the cyanobacterium Anabaena variabilis M3, Nucleic Acids Res. 23, 2161-2167.CrossRefPubMedGoogle Scholar
  73. Roos, J.C.. and Vincent, W.F. (1998) Temperature dependence of UV radiation effects on Antarctic cyanobacteria, J. Phycol. 34, 78-85.CrossRefGoogle Scholar
  74. Sand-Jensen, K., Riis, T., Markager, S. and Vincent, W.F. (1999) Slow growth and decomposition of mosses in Arctic lakes, Can. J. Fish. Aquat. Sci. 56, 388-393.CrossRefGoogle Scholar
  75. Schrag, D.P. and Hoffman, P.F. (2001) Life, geology and snowball Earth, Nature 409, 306.CrossRefPubMedGoogle Scholar
  76. Simmons, G.W. Jr., Vestal, J.R. and Wharton, R.A. Jr. (1993) Environmental regulators of microbial activity in continental Antarctic lakes. In: W.J. Green and E.I. Friedmann (eds.) Physical and Biogeochemical Processes in Antarctic Lakes. Antarctic Research Series, American Geophysical Union, 59, 197-214.Google Scholar
  77. Spauldin, S.A., McKnight, D.M., Smith, L.R. and Dufford, R. (1994) Phytoplankton population dynamics in perennially ice-covered lake Fryxell, Antarctica, J. Plankton Res. 16 (5), 527-541.CrossRefGoogle Scholar
  78. Spigel, R.H. and Priscu, J.C. (1998) Physical limnology of the McMurdo Dry Valleylakes. In: J.C. Priscu (ed.) Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. Antarctic Research series, American Geophysical Union, 72, 153-188.Google Scholar
  79. Sun, W.Q. and Leopold, A.C. (1994a) The glassy state and seed storage stability: a viability equation analysis, Ann. Bot., 74, 601-604.CrossRefGoogle Scholar
  80. Sun, W.Q. and Leopold, A.C. (1994b) The role of sugar, vitrification and membrane phase transition in seed desiccation tolerance, Physiol. Plant. 90, 621-628.CrossRefGoogle Scholar
  81. Tang, E.P.Y. and Vincent, W. (1999) Strategies of thermal adaptation by high-latitude cyanobacteria, New Phytol. 142, 315-323.CrossRefGoogle Scholar
  82. Tang, E.P.Y., Tremblay, R. and Vincent, W.F. (1997) Cyanobacterial dominance of Polar freshwater ecosystems: are high latitude-mat-formers adapted to low temperature? J. Phycol. 33, 171-181.CrossRefGoogle Scholar
  83. Taylor, G. (1916) With Scott: The Silver Lining. Dodd, Mead and Company, New York.Google Scholar
  84. Vincent, W.F. (1988) Microbial Ecosystems of Antarctica. Cambridge University Press, UK, 304 pp.Google Scholar
  85. Vincent, W.F. (2000a) Cyanobacterial dominance in the Polar Regions. In: W. Potts (ed.) Cyanobacteria: Their Diversity in Time and Space, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 321-338.Google Scholar
  86. Vincent, W.F. (2000b) Cyanobacterial dominance in the Polar Regions. In: B.A. Whitton and M. Potts (eds.) The Ecology of Cyanobacteria: Their Diversity in Time and Space, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 321-340.Google Scholar
  87. Vincent, W.F., and C. Howard-Williams (2001) Life on Snowball Earth, Science 287, 2421.CrossRefGoogle Scholar
  88. Vincent, W.F., Howard-Williams, C. and Broady, P.A. (1993a) Microbial communities and processes in Antarctic flowing waters. In: E.I. Friedmann (ed.) Antarctic Microbiology, New York, John Wiley, pp. 543-569.Google Scholar
  89. Vincent, W.F., Castenholz, R.W., Downes, M.T. and Howard-Williams, C. (1993b) Antarctic cyano-bacteria: light, nutrients, and photosynthesis in the microbial mat environment, J. Phycol. 29, 745-755.CrossRefGoogle Scholar
  90. Vincent, W.F., Downes, M.T., Castenholz, R.W. and Howard-Williams, C. (1993c) Community structure and pigment organization of cyanobacteria-dominated microbial mats in Antarctica, Eur. J. Phycol. 28, 213-221.CrossRefGoogle Scholar
  91. Vincent, W.F., Rae, R., Laurion, I., Howard-Williams, C. and Priscu, J.C. (1997) Transparency of Antarctic ice-covered lakes to solar UV radiation, Limnol. Oceanogr. 43, 618-624.CrossRefGoogle Scholar
  92. Vincent, W.F., Gibson, J.A.E., Pienitz, R. and Villeneuve, V. (2000) Ice shelf microbial ecosystems in the high Arctic and implications for life on snowball Earth, Naturwissenshaften 87, 137-141.CrossRefGoogle Scholar
  93. Vincent, W.F., Mueller, D., Van Hove, P. and Howard-Williams, C. (2004) Glacial periods on early Earth and implications for the evolution of life. In: J. Seckbach (ed.) Origins: Genesis, Evolution and Diversity of Life, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 481-501.Google Scholar
  94. Vinebrooke, R.D. and Leavitt, P. (1999) Phytobenthos and phytoplankton as potential indicators of climatic change in mountain lakes and ponds: a HPLC-based pigment approach, J. North Am. Benthol. Soc. 18, 15-33.CrossRefGoogle Scholar
  95. Wall, D. and Virginia, R.A. (1998) Soil biodiversity and community structure in the McMurdo Dry Valleys, Antarctica. In: J.C. Priscu (ed.) Ecosystem Processes in a Polar Desert: The McMurdo Dry Valleys, Antarctica. Antarctic Research Series, American Geophysical Union, 72, 323-335.Google Scholar
  96. Wharton, R.A. Jr., Parker, B.C. and Simmons, G.M. Jr. (1983) Distribution, species composition and morphology of algal mats in Antarctic dry valley lakes, Phycologia 22, 355-365.Google Scholar
  97. Wiedner, C. and Nixdorf, B. (1998) Success of chrysophytes, cryptophytes and dinoflagellates over blue-greens (cyanobacteria) during an extreme winter (1995/96) in eutrophic shallow lakes, Hydrobiologia, 369/370, 229-235.CrossRefGoogle Scholar
  98. Williams, D.M., Kasting, J.F. and Frakes, L.A. (1998) Low-latitude glaciation and rapid changes in the earth’s obliquity explained by obliquity-oblateness feedback, Nature 396, 453-455.CrossRefPubMedGoogle Scholar
  99. Wilson, A.T. (1965) Escape of algae from frozen lakes and ponds, Ecology 46, 376.CrossRefGoogle Scholar
  100. Wing, K.T. and Priscu, J.C. (1993) Microbial communities in the permanent ice cap of Lake Bonney, Antarctica: relationships among chlorophyll a, gravel and nutrients, Antarct. J. US 28, 246-249.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • S. M. Singh
    • 1
  • J. Elster
    • 2
  1. 1.National Centre for Antarctic and Ocean ResearchHeadland SadaVasco-Da-GamaIndia
  2. 2.Trebon and Faculty of Biological SciencesUniversity of South BohemiaCzech Republic

Personalised recommendations