Cold Tolerance in Cyanobacteria and Life in the Cryosphere

  • Warwick F. Vincent
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

Cyanobacteria are commonly thought of as microbial phototrophs that are characteristic of warm water environments such as hot springs (Steunou et al., 2006), stratified lakes during summer (Vazquez et al., 2005) and tropical oceans (Johnson et al., 2006). It is less widely known that many cyanobacterial taxa achieve their greatest ecological success at the opposite thermal extreme, in polar and alpine environments. One of the first discoveries of the prolific growth of cyanobacteria in the cryosphere (the ensemble of cold environments containing snow and ice) was by the Swedish-Finnish explorer Adolf Erik Nordenskiöld. In his expedition across the Greenland Ice Cap in 1870 his team discovered black sediment that he called ‘cryoconite’, cold rock dust collecting in melt holes (Leslie, 1879). On closer inspection they observed that this material was composed of not only inorganic sediments but also black-pigmented cyanobacteria, now known to be mostly the heterocystous species Calothrix parietina (Gerdel and Drouet, 1960). They concluded that because of its dark colouration, this cyanobacteria and its bound sediment absorbs radiation and hastens melting of the ice, a process more recently documented on glaciers (Takeuchi et al., 2001) and ice shelves in the Canadian High Arctic (Mueller and Vincent, 2006).


Cold Tolerance Glycine Betaine Photosynthetically Available Radiation Antarctic Lake Cryoconite Hole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belzile, C., Vincent, W.F., Gibson, J.A.E. and Van Hove, P. (2001) Bio-optical characteristics of the snow, ice and water column of a perennially ice-covered lake in the high Arctic. Can. J. Fish. Aquat. Sci. 58: 2405-2418.CrossRefGoogle Scholar
  2. Böhm, G.A, Pfeiderer, W., Böger, P. and Scherer, S. (1995) Structure of a novel oligosaccharide-mycosporine-amino acid ultraviolet A/B sunscreen pigment from the terrestrial cyanobacterium Nostoc commune. J. Biol. Chem. 270: 8536-8539.CrossRefPubMedGoogle Scholar
  3. Bonilla, S., Villeneuve, V. and Vincent, W.F (2005) Benthic and planktonic algal communities in a high arctic lake: pigment structure and contrasting responses to nutrient enrichment. J. Phycol. 41: 1120-1130.CrossRefGoogle Scholar
  4. Chintalapati, S., Kiran, M.D. and Shivaji, S. (2004) Role of membrane lipid fatty acids in cold adap-tation. Cell. Mol. Biol. 50: 631-642.PubMedGoogle Scholar
  5. Christner, B.C., Kvitko, B.H. II and Reeve, J.N. (2003) Molecular identification of bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7: 177-183.PubMedGoogle Scholar
  6. Cockell, C.S. and Knowland, J. (1999) Ultraviolet radiation screening compounds. Biol. Rev. Camb. Philos. Soc. 74: 311-345.CrossRefPubMedGoogle Scholar
  7. Cockell, C.S. and Stokes, M.D. (2004) Widespread colonization by polar hypoliths. Nature 431: 414.CrossRefPubMedGoogle Scholar
  8. Corsetti, F.A., Olcott, A.N. and Bakermans, C. (2006) The biotic response to Neoproterozoic snow-ball earth. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232: 114-130.CrossRefGoogle Scholar
  9. de los Ríos, A., Ascaso, C., Wierzchos, J., Fernández-Valiente, E. and Quesada, A. (2004) Microstructural characterization of cyanobacterial mats from the McMurdo Ice Shelf, Antarctica. Appl. Environ. Microbiol. 70: 569-580.CrossRefGoogle Scholar
  10. Elster, J., Svoboda, J., Komárek, J. and Marvan, P. (1997) Algal and cyanoprocaryote communities in a glacial stream, Sverdrup Pass. 79°N, Central Ellesmere, Canada. Arch. Hydrobiol. Algol.Stud. 85: 57-93.Google Scholar
  11. Fernández-Valiente, E., Camacho, A., Cochera, C., Rico, E., Vincent, W.F. and Quesada, A. (2007) Community structure and physiological characterization of microbial mats in Byers Peninsula, Livingston Island (South Shetland Islands, Antarctica). FEMS Microb. Ecol. 59: 377-385.Google Scholar
  12. Fuller, B.J. (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. Cryo Letters 25: 375-388.PubMedGoogle Scholar
  13. Garcia-Pichel, F. and Castenholz, R.W. (1991) Characterization and biological implications of scy-tonemin, a cyanobacterial sheath pigment. J. Phycol. 27: 395-409.CrossRefGoogle Scholar
  14. Garcia-Pichel, F. and Castenholz, R. (1993) Occurrence of UV absorbing mycosporine-like com-pounds among cyanobacterial isolates and an estimate of their screening ability. Appl. Environ. Microbiol. 59: 163-169.PubMedGoogle Scholar
  15. Gerdel, R.W. and Drouet, F. (1960) The cyanobacteria of the Thule area, Greenland. Trans. Am. Microsc. Soc. 79: 256-272.CrossRefGoogle Scholar
  16. Hawes, I. and Schwarz, A-M. (1999) Photosynthesis in an extreme shade environment: benthic microbial mats from Lake Hoare, a permanently ice-covered Antarctic lake. J. Phycol. 35: 448-459.CrossRefGoogle Scholar
  17. Hawes, I. and Schwarz, A-M. (2001) Absorption and utilization of irradiance by cyanobacterial mats in two ice-covered Antarctic lakes with contrasting light climates. J. Phycol. 37: 5-15.CrossRefGoogle Scholar
  18. Hirschberg, J. and Chamovitz, D. (1994) Carotenoids in cyanobacteria. In: D.A. Bryant (ed.), The Molecular Biology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 559-579.Google Scholar
  19. Hoffman, P.F. and Schrag, D.P. (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14: 129-155. doi: 10.1046/j.CrossRefGoogle Scholar
  20. Howard-Williams, C., Pridmore, R.D., Downes, M.T. and Vincent, W.F. (1989) Microbial biomass, photosynthesis and chlorophyll a related pigments in the ponds of the McMurdo Ice Shelf. Antarctica. Antarct. Sci. 1: 125-131.Google Scholar
  21. Johnson, Z.I., Zinser, E.R., Coe, A., McNulty, N.P., Malcolm, E., Woodward, S. and Chisholm, S.W, (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311: 1737-1740.CrossRefPubMedGoogle Scholar
  22. Joshua, S., Bailey, S., Mann, N.H. and Mullineaux, C.W. (2005) Involvement of phycobilisome diffu-sion in energy quenching in cyanobacteria. Plant Physiol. 138: 1577-1585.CrossRefPubMedGoogle Scholar
  23. Jungblut, A.D., Hawes, I., Mountfort, D., Hitzfeld, B., Dietrich, D.R., Burns, B.P. and Neilan, B.A. (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica. Environ. Microbiol. 7: 519-529.Google Scholar
  24. Leslie, A., (1879) The Arctic Voyages of Adolf Erik Nordenskiöld. MacMillan and Co., London, UK, 447 pp.Google Scholar
  25. Mackay, M.A., Norton, R.S. and Borowitzka, L.J. (1984) Organic osmoregulatory solutes in cyanobacteria. J. Gen. Microbiol. 130: 2177-2191.Google Scholar
  26. McKnight, D.M., Niyogi, D.K., Alger, A.S., Bomblies, A., Conovitz, P.A. and Tate, C.M. (1999) Dry Valley streams in Antarctica: ecosystems waiting for water. Bioscience 49: 985-995.CrossRefGoogle Scholar
  27. Melezhik, V.A., (2006). Multiple causes of Ea rth’s earliest global glaciation. Terra Nova 18: 130-137.CrossRefGoogle Scholar
  28. Morgan-Kiss, R.M., Priscu, J.C., Pocock, T., Gudynaite-Savitch, L. and Huner, N.P.A (2006) Adaptation and acclimation of photosynthetic microorganisms to permanently cold environ-ments. Microbiol. Mol. Biol. Rev. 70: 222-252.CrossRefPubMedGoogle Scholar
  29. Mueller, D. and Pollard, W.H. (2004) Gradient analysis of cryoconite ecosystems from two polar gla-ciers. Polar Biol. 27: 66-74.CrossRefGoogle Scholar
  30. Mueller, D.R. and Vincent, W.F. (2006) Microbial habitat dynamics and ablation control on the Ward Hunt Ice Shelf. Hydrological Processes 20: 857-876.CrossRefGoogle Scholar
  31. Mueller, D.R., Vincent, W.F., Bonilla, S. and Laurion, I. (2005) Extremophiles, extremotrophs and broad-band pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiol. Ecol. 53: 73-87.Google Scholar
  32. Mullineaux, C.W. and Emlyn-Jones, D. (2005) State transitions: an example of acclimation to low-light stress. J. Exp. Bot. 56: 389-393.CrossRefPubMedGoogle Scholar
  33. Nadeau, T.L. and Castenholz, R.W. (2000) Characterization of psychrophilic oscillatorians (cyanobacteria) from antarctic meltwater ponds. J. Phycol. 36: 914-923.CrossRefGoogle Scholar
  34. Nadeau, T.L., Howard-Williams, C. and Castenholz, R.W. (1999) Effects of solar UV and visible irra-diance on photosynthesis and vertical migration of Oscillatoria sp (cyanobacteria) in an Antarctic microbial mat. Aquat. Microb. Ecol. 20: 231-243.CrossRefGoogle Scholar
  35. Olcott, A.N., Sessions, A.L., Corsetti, F.A., Kaufman, A.J. and de Oliviera, T.F. (2005) Biomarker evi-dence for photosynthesis during Neoproterozoic glaciation. Science 310: 471-474.CrossRefPubMedGoogle Scholar
  36. Papageorgiou, G.C. and Murata, N. (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth. Res. 44: 243-252.CrossRefGoogle Scholar
  37. Porazinska, D.L., Fountain, A.G., Nylen, T.H., Tranter, M., Virginia, R.A. and Wall, D.H. (2004) The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arct. Antarct. Alp. Res. 36: 84-91.CrossRefGoogle Scholar
  38. Powell, L.M., Bowman, J.P., Skerratt, J.H., Franzmann, P.D. and Burton, H.R. (2005) Ecology of a novel Synechococcus clade occurring in dense populations in saline Antarctic lakes. Mar. Ecol. Prog. Ser. 291: 65-80.CrossRefGoogle Scholar
  39. Proteau, P.J., Gerwick, W.H., Garcia-Pichel, F. and Castenholz, R. (1993) The structure of scytonemin: an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49: 825-829.CrossRefPubMedGoogle Scholar
  40. Quesada, A., Vincent, W.F. and Lean, D.R.S. (1999) Community and pigment structure of Arctic cyanobacterial assemblages: the occurrence and distribution of UV-absorbing compounds. FEMS Microbiol. Ecol. 28: 315-323.Google Scholar
  41. Rae, R., and Vincent, W.F. (1998) Effects of temperature and UV radiation on microbial food web structure: potential responses to global change. Freshw. Biol. 40: 1-12.CrossRefGoogle Scholar
  42. Rae, R., Howard-Williams, C., Hawes, I. and Vincent, W.F. (2000) Temperature-dependence of pho-tosynthetic recovery from solar damage in Antarctic phytoplankton. In: W. Davison, C. Howard-Williams and P.A. Broady (eds.), Antarctic Ecosystems: Models for Wider Ecological Understanding. The Caxton Press, Christchurch, New Zealand, pp. 183-189.Google Scholar
  43. Rautio, M., and Vincent, W.F. (2006) Benthic and pelagic food resources for zooplankton in shallow high-latitude lakes and ponds. Freshw. Biol. 51: 1038-1052.CrossRefGoogle Scholar
  44. Raymond, J.A., and Fritsen, C.H. (2000) Ice-active substances associated with Antarctic freshwater and terrestrial photosynthetic organisms. Antarct. Sci. 12: 418-424.CrossRefGoogle Scholar
  45. Roos, J.C., and Vincent, W.F. (1998) Temperature dependence of UV radiation effects on Antarctic cyanobacteria. J. Phycol. 34: 118-125.CrossRefGoogle Scholar
  46. Sabbe, K., Hodgson, D.A., Verleyen, E., Taton, A., Wilmotte, A., Vanhoutte, K. and Vyverman, W. (2004) Salinity, depth and the structure and composition of microbial mats in continental Antarctic lakes. Freshw.. Biol. 49: 296-319.CrossRefGoogle Scholar
  47. Schmidt, S., Moskall, W., de Mora, S.J.D., Howard-Williams, C., and Vincent, W.F. (1991) Limnological properties of Antarctic ponds during winter freezing. Antarct. Sci. 3: 379-388.CrossRefGoogle Scholar
  48. Singh, S.M., Elster, J. (2007) Cyanobacteria in antarctic lake environments: A mini-review in: J. Seckbach (ed.) Algae and Cyanobacteria in Extreme Environments. Springer, Dordrecht. (the volume) pp. xxx-yyy.Google Scholar
  49. Smith, M.C., Bowman, J.P., Scott, F.J., and Line, M.A. (2000) Sublithic bacteria associated with Antarctic quartz stones. Antarct. Sci. 12: 177-184.Google Scholar
  50. Sommaruga, R., and Garcia-Pichel, F. (1999) UV-absorbing mycosporine-like compounds in plank-tonic and benthic organisms from a high-mountain lake. Arch. Hydrobiol. 144: 255-269.Google Scholar
  51. Steunou, A-S., Bhaya, D., Bateson, M.M., Melendrez, M.C., Ward, D.M., Brecht, E., Peters, J.W., Kühl, M. and Grossman, A.R. (2006) In situ analysis of nitrogen fixation and metabolic switch-ing in unicellular thermophilic cyanobacteria inhabiting hot spring microbial mats. Proc. Natl. Acad. Sci. U.S.A. 103: 2398-2403.CrossRefPubMedGoogle Scholar
  52. Stibal, M., Sˇabacká, M. and Kaštovská, K. (2006) Microbial communities on glacier surfaces in Svalbard: Impact of physical and chemical properties on abundance and structure of cyano-bacteria and algae. Microb. Ecol. 52: 644-654.CrossRefPubMedGoogle Scholar
  53. Suzuki, I., Kanasaki, Y., Mikami, K., Kahnehisa, M. and Murata, N. (2001) Cold regulated genes under the control of hik33 in Synechocystis. Mol. Microbiol. 40: 235-245.CrossRefPubMedGoogle Scholar
  54. Takeuchi, N., Kohshima, S.S., Goto-Azuma, K. and Koerner, R.M. (2001) Biological characteristics of dark colored material (cryoconite) on Canadian Arctic glaciers (Devon and Penny ice caps). Mem. Natl. Inst. Polar Res. Special Issue 54: 495-505.Google Scholar
  55. Tamaru, Y., Takani, Y., Yoshida, T. and Sakamoto, T. (2005) Crucial role of extracellular polysac-charides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl. Environ. Microbiol. 71: 7327-7333.CrossRefPubMedGoogle Scholar
  56. Tang, E.P.Y, Tremblay, R. and Vincent, W.F. (1997) Cyanobacteria dominance of polar freshwa-ter ecosystems: are high latitude mat-formers adapted to low temperature? J. Phycol. 33: 171-181.CrossRefGoogle Scholar
  57. Taton, A., Grubisic, S., Balthasart, P., Hodgson, D.A., Laybourn-Parry, J. and Wilmotte, A. (2006) Biogeographical distribution and ecological ranges of benthic cyanobacteria in East Antarctic lakes. FEMS Microbiol. Ecol. 57: 272-289.Google Scholar
  58. Thomas, D.N., and Dieckmann, G.S. (2002) Antarctic sea ice - a habitat for extremophiles. Science 295: 641-644.CrossRefPubMedGoogle Scholar
  59. Tranter, M., Fountain, A.G., Fritsen, C.H., Lyons, W.B., Priscu, J.C., Statham, P.J. and Welch, K.A., (2004) Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrological Processes 18: 379-387.CrossRefGoogle Scholar
  60. Van Hove, P., Belzile, C., Gibson, J.A.E. and Vincent, W.F. (2006) Coupled landscape-lake evolution in the Canadian High Arctic. Can. J. Earth Sci. 43: 533-546.CrossRefGoogle Scholar
  61. Vazquez, G., Jimenez, S., Favila, M.E. and Martinez, A. (2005) Seasonal dynamics of the phyto-plankton community and cyanobacterial dominance in a eutrophic crater lake in Los Tuxtlas, Mexico. Ecoscience 12: 485-493.CrossRefGoogle Scholar
  62. Vézina, S. and Vincent, W.F. (1997) Arctic cyanobacteria and limnological properties of their envi-ronment: Bylot Island, Northwest Territories, Canada. (73°N, 80°W). Polar Biol. 17: 523-534.CrossRefGoogle Scholar
  63. Vincent, W.F. (1988) Microbial Ecosystems of Antarctica. Cambridge University Press, Cambridge, UK, 304 pp.Google Scholar
  64. Vincent, W.F. (2000) Cyanobacterial dominance in the Polar Regions. In: B.A. Whitton and M. Potts (eds.), The Ecology of Cyanobacteria. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 321-340.Google Scholar
  65. Vincent, W.F. and Quesada A. (1993) Cyanobacterial responses to UV radiation: implications for antarctic microbial ecosystems. Antarct. Res. Ser. 62: 111-124.Google Scholar
  66. Vincent, W.F., Howard-Williams, C. and Broady P.A. (1993) Microbial communities and processes in Antarctic flowing waters, In: I. Friedmann (ed.), Antarctic Microbiology. Wiley-Liss, New York, pp. 543-569.Google Scholar
  67. Vincent, W.F., Mueller, D.R. and Bonilla, S. (2004a) Ecosystems on ice: the microbial ecology of Markham Ice Shelf in the high Arctic. Cryobiology 48: 103-112.CrossRefPubMedGoogle Scholar
  68. Vincent, W.F., Mueller, D.R., Van Hove, P. and Howard-Willams, C. (2004b) Glacial periods on early Earth and implications for the evolution of life In: J. Seckbach (ed.), Origins: Genesis, Evolution and Diversity of Life. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 481-501.Google Scholar
  69. Vinebrooke, R.D. and Leavitt, P.R. (1996) Effects of ultraviolet radiation on periphyton in an alpine lake. Limnol. Oceanogr. 41: 1035-1040.CrossRefGoogle Scholar
  70. Vishnivetskaya, T., Erokhina, L.G., Spirina, E.V., Shatilovich, A.V., Vorobyova, E.A., Tsapin, A.I. and Gilichinisky D.A. (2005) Viable phototrophs: cyanobacteria and green algae from the per-mafrost darkness. In: J.D. Castello and S.O. Rogers (eds.), Life in Ancient Ice. Princeton University Press, Princeton, USA, pp.140-158.Google Scholar
  71. Vopel, K. and Hawes I. (2006) Photosynthetic performance of benthic microbial mats in Lake Hoare, Antarctica. Limnol. Oceanogr. 51: 1801-1812.Google Scholar
  72. Waleron, M., Waleron, K., Vincent, W.F. and Wilmotte, A. (2007) Allochthonous inputs of riverine picocyanobacteria to coastal waters in the Arctic Ocean. FEMS Microbiol. Ecol. 59: 356-365.Google Scholar
  73. Wharton, R.A., Parker, B.C. and Simmons, G.M. (1983) Distribution, species composition and mor-phology of algal mats in Antarctic dry valley lakes. Phycologia 22: 355-365.Google Scholar
  74. Wharton, R.A., Vinyard, W.C., Parker, B.C., Simmons, G.M. and Seaburg, K.G. (1981) Algae in cry-oconite holes on Canada Glacier in Southern Victoria land, Antarctica. Phycologia 20: 208-211.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Warwick F. Vincent
    • 1
  1. 1.Centre d'Études Nordiques & Département de BiologieLaval UniversityQuebec CityCanada

Personalised recommendations