Advertisement

Soil and Freshwater Micro-Algae as a Food Source for Invertebrates in Extreme Environments

  • Alena Lukešová
  • Jan Frouz
Chapter
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

Microscopic algae and cyanobacteria (the term micro-algae will be used in the text to cover both eukaryotic algae and prokaryotic cyanobacteria) are able to colonize almost all of the biotopes on earth. They are the most important primary producers in both sea and freshwater ecosystems. Their importance in terrestrial ecosystems increases further in extreme habitats because of the decreased competition of higher plants. For example, in the Antarctic, the role of algae as primary producers increases from the maritime to the continental areas where harsher conditions limit the development of mosses (Wynn-Williams, 1985). Algal mats and biological soil crusts are found worldwide in various extreme environments (Broady, 1979; Vincent, 1988; Cohen and Rosenberg, 1989; Belnap and Lange, 2001). As primary producers, micro-algae represent the bottom of the food webs, and serve as an important food source for a wide spectrum of animals.

The aim of this chapter is to summarize recent knowledge about the role of terrestrial and freshwater micro-algae as a food source for invertebrates, with particular attention to extreme habitats.

Keywords

Extreme Environment Biological Soil Crust Oribatid Mite Soil Invertebrate Important Food Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, A.A. (1998). Algal defense, grazers, and their interactions in aquatic trophic cascades. Acta Oecol. 19: 331-337.Google Scholar
  2. Arens, W. (1994). Striking convergence in the mouthpart evolution of stream-living algae grazers. J. Zool. Syst. Evol. Res. 32: 319-343.Google Scholar
  3. Balayla, D.J. and Moss, B. (2004). Relative importance of grazing on algae by plant-associated and open-water microcrustacea (Cladocera). Arch. Hydrobiol. 161: 199-224.Google Scholar
  4. Bauer, T. (1979). Die Feuchtigkeit als steuernder Faktor für das Kletterverhalten von Collembolen. Pedobiologia 19: 165-175.Google Scholar
  5. Belnap, J. (2001). Microbes and microfauna associated with biological soil crusts, in: J. Belnap and O.L. Lange (eds.), Biological Soil Crusts: Structure, Function, and Management. Ecological Studies 150. Springer-Verlag, Berlin, pp. 167-174.Google Scholar
  6. Belnap, J. and Lange, O.L. (eds.) (2001). Biological Soil Crusts: Structure, Function, and Management. Ecological Studies 150, Springer-Verlag, Berlin.Google Scholar
  7. Benzie, J.A.H. (2005). The genus Daphnia (including Daphniopsis), Backhazs, Lajdej.Google Scholar
  8. Berg, M.G. (1995). Larval food and feeding behaviour, in: P.D. Armitage, P.S. Cranston and L.C.V. Pinder (eds.), The Chironomidae. Chapman and Hall, London, pp. 139-168.Google Scholar
  9. Berg, M.P., Stoffer, M. and van den Heuvel H.H. (2004). Feeding guilds in Collembola based on diges-tive enzymes. Pedobiologia 48: 589-601.Google Scholar
  10. Block, W. (1984). Terrestrial microbiology, invertebrates and ecosystems, in: R.M. Laws (ed.), Antarctic Ecology, vol.1. Academic Press, London, pp. 163-236.Google Scholar
  11. Bongers, T. and Bongers, M. (1998). Functional diversity of nematodes. Appl. Soil Ecol. 10: 239-251.Google Scholar
  12. Broady, P.A. (1979). Feeding studies on the collembolan Cryptopygus antarcticus Willem at Signy Island, South Orkney Islands. Br. Antarct. Surv. Bull. 48: 37-46.Google Scholar
  13. Broady, P.A. (1989). Survey of algae and other terrestrial biota at Edwards VII Peninsula, Marie Byrd Land. Antarct. Sci. 1: 215-224.Google Scholar
  14. Brunner, U. and Honegger, R. (1985). Chemicaland ultrastructural studies on the distribution of sporopollenin-like biopolymers in six genera of lichen phycobionts. Can. J. Bot. 63: 2221-2230.Google Scholar
  15. Burczyk, J. (1987). Biogenetic relationships between ketocarotenoids and sporopollenins in green algae. Phytochemistry 28: 113-119.Google Scholar
  16. Burn, A.J. (1981). Feeding and growth in the Antarctic collembolan Cryptopygus antarcticus. Oikos 36: 59-64.Google Scholar
  17. Burn, A.J. (1982). Effects of temperature on the feeding activity of Cryptopygus antarcticus. C.N.F.R.A. 51: 209-217.Google Scholar
  18. Burn, A.J. (1984). Life cycle strategies in two Antarctic Collembola. Oecologia (Berlin) 64: 223-229.Google Scholar
  19. Burn, A.J. (1986). Feeding rates of the cryptostigmatid mite Alaskozetes antarcticus (Michael). Br. Antarct. Surv. Bull. 71: 11-17.Google Scholar
  20. Cohen, Y. and Rosenberg, E. (eds.) (1989). Microbial Mats. Physiological Ecology of Benthic Microbial Communities, American Society for Microbiology, Washington D.C.Google Scholar
  21. Coûteaux, M.M. and Darbyshire, J.F. (1998). Functional diversity amongst soil protozoa. Appl. Soil Ecol. 10: 229-237.Google Scholar
  22. Davey, M.C. and Clarke, K.J. (1992). Fine structure of a terrestrial cyanobacterial mat from Antarctica. J. Phycol. 28: 199-202.Google Scholar
  23. Davidson, M.M. and Broady, P.A. (1996). Analysis of gut contents of Gomphiocephalus hodgsoni Carpenter (Collembola: Hypogastruridae) at Cape Geology, Antarctica. Polar Biol. 16: 463-467.Google Scholar
  24. Degans, H. and De Meester, L. (2002). Top-down control of natural phyto- and bacterioplankton prey communities by Daphnia magna and by the natural zooplankton community of the hyper-trophic Lake Blankaart. Hydrobiologia 479: 39-49.Google Scholar
  25. De Goede, R.G.M., Verschoor, B.C. and Georgieva, S.S. (1993). Nematode distribution, trophic struc-ture and biomass in a primary succession of blown-out areas in a drift sand landscape. Fund. Appl. Nemat. 16: 525-538.Google Scholar
  26. Delwiche, C.F., Graham, L.E. and Thomson, N. (1989). Lignin-like compounds and sporopollenin in Coleochaete, an algal model for land plant ancestry. Science 245: 399-401.PubMedGoogle Scholar
  27. Elhottová, D., Frouz, J., Krisˇtu°fek, V., Lukešová,A., Nováková, A. and Tříska, J. (2002). Potential sources of polyunsaturated fatty acids for saprophagous soil invertebrates. in: K. Tajovsky, V. Balík and V. Pižl (eds.), Studies on Soil Fauna in Central Europe, Proceedings of the 6th Central European Workshop on Soil Zoology. Institute of Soil Biology AS CR, Cˇeské Budějovice, pp. 31-37.Google Scholar
  28. Fitzsimons, J.M. (1971). On the food habits of certain Antarctic arthropods from coastal Victoria Land and from adjacent island. Pac. Insects Monogr. 25: 121-125.Google Scholar
  29. Foote, B.A. (1995). Biology of shore flies. Ann. Rev. Entomol. 40: 417-442.Google Scholar
  30. Freckman, D.W. and Virginia, R.A. (1997). Low-diversity Antarctic soil nematode communities: dis-tribution and response to disturbance. Ecology 78: 363-369.Google Scholar
  31. Frouz, J. and Lukešová, A. (1995). Food preference of two species of terrestrial chironomids (Diptera, Chironomidae). Dipterologica bohemoslovaca 7: 41-46.Google Scholar
  32. Frouz, J., Ali, A. and Lobinske, R.J. (2004a). Laboratory evaluation of six algal species for larval nutritional suitability of the pestiferous midge Glyptotendipes paripes (Diptera: Chironomidae). J. Econom. Entomol. 97: 1884-1890.Google Scholar
  33. Frouz, J., Ali, A. and Lobinske, R.J. (2004b). Algal food selection and digestion by larvae of the pes-tiferous chironomid Chironomus crassicaudatus under laboratory conditions. J. Am. Mosq. Contr. Assoc. 20: 458-461.Google Scholar
  34. Good, B.H. and Chapman, R.L. (1978). TheUltrastructure of Phycopeltis(Chroolepidaceae; Chlorophyta). I. Cell walls and sporopollenin. Amer. J. Bot. 65(1): 27-33.Google Scholar
  35. Gulati, R.D. and De Mott, W.R. (1997). The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshw. Biol. 38: 753-768.Google Scholar
  36. Heal, O.W. and Felton, M.J. (1970). Soil amoebae: their food and their reaction to microflora exu-dates, in: A. Watson (ed.), Animal Populations in Relation to Their Food Resources. Oxford, Edinburgh, pp. 145-162.Google Scholar
  37. Hessen, D.O., Van Donk, E. and Andersen, T. (1995). Growth responses, P-uptake and loss of flagella in Chlamydomonas reinhardtii exposed to UV-B. J. Plankton Res. 17: 17-27.Google Scholar
  38. Hietala, J., Maataa, C.L. and Aalls, M. (1997). Sensitivity of Daphnia to toxic cyanobacteria. Effects of genotype and temperature. Freshw. Biol. 37: 299-306.Google Scholar
  39. Hodkinson, I.D., Coulson, S., Webb, N.R., Block, W., Strathdee, A.T. and Bale, J.S. (1994). Feeding studies on Onychiurus arcticus (Tullberg) (Collembola: Onychiuridae) on West Spitsbergen. Polar Biol. 14: 17-19.Google Scholar
  40. Hoeppli, R. and Chu, H.J. (1932). Free living nematodes in hot spring in China and Formosa. Honkong Nat. Suppl. 1: 5-32.Google Scholar
  41. Honneger, R. and Brunner, V. (1981). Sporopollenin in cell walls of Coccomyxa and Myrmecia phy-cobionts of various lichens: an ultrastructure and chemical investigation. Canad. J. Bot. 59: 2713-2734.Google Scholar
  42. Hubert, J. and Lukešová, A. (2001). Feeding of the panphytophagous oribatid mite Scheloribates lae-vigatus (Acari: Oribatida) on cyanobacterial and algal diets in laboratory experiments. Appl. Soil Ecol. 16: 77-83.Google Scholar
  43. Kaler, V.L., Bulko, O.P., Reshetnikov, V.N. and Galkovskaia, G.A. (2000). Changes in the mor-phostructure of Scenedesmus acutus and culture growth rate induced by the exudate of primary consumer Daphnia magna. Russ. J. Plant Physiol. 47: 698-705.Google Scholar
  44. Kiviranta, J. and Abdel-Hameed, A. (1994). Toxicity of the blue-green alga Oscillatoria aghardii to the mosquito Aedes aegypti and the shrimp Artemia salina. World J. Microbiol. Biotechnol. 10: 517-520.Google Scholar
  45. Konig, J. and Peveling, E. (1984). Cell walls of the phycobionts Trebouxia and Pseudotrebouxia con-stituents and their localization. Lichenologist 16: 129-144.Google Scholar
  46. Kozlovskaja, L.S., Domracheva, L.I. and Shtina, E.A. (1975). Relationships between soil inverte-brates and soil algae. In: Problemy pochvennoi zoologii. Materialy V. Vses. soveshch., Vilnijus, pp. 180-181 [in Russian].Google Scholar
  47. Kozlovskaja, L.S. and Shtina, E.A. (1987). Relationships between diplopods and soil algae, in: B.R. Striganova (ed.), Pochvennaia fauna i pochvennoe plodorodie. Tr. 9-ogo mezhdunar. kolok. po pochvennoi zool. Nauka, Moskva, pp. 68-71.Google Scholar
  48. ˚fek, V., Lukešová, A. and Nováková, A. (1997). Soil microorganisms as source of food for enchytraeids (Annelida, Enchytraeidae), in: O. Dˇugová (ed.), Life in Soil, Czechoslovak Society for Microbiology, Institute of Microbiology SAS, Bratislava, pp. 41-42 [in Czech].Google Scholar
  49. Kumar, R. and Rao, T.R. (1999). Effect of algal food on animal prey consumption rates in the omniv-orous copepod, Mesocyclops thermocyclopoides. Int. Rev. Hydrobiol. 84: 419-426.Google Scholar
  50. Kurmayer, R. and Juttner, F. (1999). Strategies for the co-existence of zooplankton with the toxic cyanobacterium Planktothrix rubescens in Lake Zurich. J. Plankton Res. 2: 659-683.Google Scholar
  51. Laminger, H. (1980). Bodenprotozoologie. Microbios 1: 1-142.Google Scholar
  52. Lampert, W. (1987). Laboratory studies on zooplankton cyanobacteria interactions. New Zealand J. Mar. Freshw. Res. 21: 483-490.Google Scholar
  53. Laureillard, J., Largeau, C., Waeghemaker, F. and Casadevall, E. (1986). Biosynthesis of the resistant polymer in the alga Botryococcus braunii. Studies on the possible direct precursors. J. Nat. Prod. 49: 794-799.Google Scholar
  54. Lavelle, P., Bignell, D., Lepage, M., Wolters, V., Rogers, P., Ineson, P., Heal, O.W. and Dhillion, S. (1997). Soil function in changing world: the role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 33: 159-193.Google Scholar
  55. Levine, S.N, Borchardt, M.A., Braner, M. and Shambaugh, A.D. (1999). The impact of zooplankton grazing on phytoplankton species composition and biomass in Lake Champlain (USA-Canada). J. Great Lakes Res. 25: 61-77.CrossRefGoogle Scholar
  56. Lewis, W.M., Hamilton, S.K., Rodriguez, M.A., Saunders, J.F. and Lasi, M.A. (2001). Food web analysis of the Orinoco floodplain based on production estimates and stable isotope data. J. North Am. Benth. Soc. 20: 241-254.Google Scholar
  57. Littlewood, C.F. (1969). A surface sterilization technique used in feeding algae to Oribatei, in: G.O. Evans (ed.), Proc. 2nd. Intern. Congr. Acarology, Sutton Bonington, Hung. Acad. Sci., Budapest, pp. 53-56.Google Scholar
  58. Lukešová, A. (1989). Ecology of algae in soils of different successional age, PhD dissertation, Institute of Soil Biology, Cˇeské Budějovice [in Czech].Google Scholar
  59. Lukešová, A. (2000). Methods of interaction studies between soil algae and invertebrates, in: ˚fek, D D. Elhottová, J. Frouz and V. Sˇustr (eds.), Interakce půdních mikroorganismů , ˚dní biologie AV CˇR, Cˇeské Budějovice, pp. 129-132 [in Czech].Google Scholar
  60. Lukešová, A. and Tajovský, K. (1999). Interactions between soil algae and saprophagous invertebrates (Diplopoda and Oniscidea), in: K.Tajovský and V. Pižl (eds.), Soil Zoology in Central Europe. Institute of Soil Biology AS CR, Cˇeské Budějovice, pp. 187-195.Google Scholar
  61. Lurling, M. and Van Donk, E. (2000). Grazer-induced colony formation in Scenedesmus: are there costs to being colonial? Oikos 88: 111-118.Google Scholar
  62. Luxton, M. (1972). Studies on the oribatid mites of a Danish beech wood soil. Pedobiologia 12: 434-463.Google Scholar
  63. Mayeli, S.M., Nandini, S. and Sarma, S. (2004). The efficacy of Scenedesmus morphology as a defense mechanism against grazing by selected species of rotifers and cladocerans. Aquatic Ecol. 38: 515-524.Google Scholar
  64. Nekrasova, K.A. (1980). Trophic relationships of soil animals and algae (on collembolans as an exam-ple). In: Pochvennaia fauna i biologicheskaja aktivnostj, osushennykh rekultiviruemykh torfianikov, Nauka, Moskva, pp. 160-166 [in Russian].Google Scholar
  65. Nekrasova, K.A. (1987). Experiment in studies of relationships between soil algae and microphy-tophagous animals, in: B.R. Striganova (ed.), Pochvennaia fauna i pochvennoe plodorodie. Tr. 9-ogo mezhdunar. kolok. po pochvennoi zool. Nauka, Moskva, pp. 408-410 [in Russian].Google Scholar
  66. Nekrasova, K.A. and Aleksandrova, I.V. (1982). Participation of collembolans and earthworms in the transformation of algal organic matter. Pochvovedenie 10: 65-71Google Scholar
  67. Nekrasova, K.A. and Domracheva, L.I. (1972). Importance of the investigation of soil invertebrates in the quantification of soil algae, in: Metody izucheniia i prakticheskogo ispol’zovaniia pochven-nych vodoroslei. Tr. Kirov. s.-cg. in-ta. Kirov, pp. 175-181 [in Russian].Google Scholar
  68. Nekrasova, K.A., Kozlovskaja, L.S., Domracheva, L.I. and Shtina, E.A. (1976). The influence of invertebrates on the development of algae. Pedobiologia 16: 286-297.Google Scholar
  69. Newsham, K.K., Rolf, J., Pearce, D.A. and Strachan, R.J. (2004). Differing preferences of Antarctic soil nematodes for microbial prey. Eur. J. Soil Biol. 40: 1-8.Google Scholar
  70. Nielsen, C.O. (1962). Carbohydrases in soil and litter invertebrates. Oikos 13: 200-215.Google Scholar
  71. Nogrady, T., Wallace, R.L. and Snell, T.W. (1993). Rotifera, Vol.1: Biology, Ecology and Systematics, SBP Academic Publishers, The Hague.Google Scholar
  72. Nováková, A., Elhottová, D., Krištůfek, V., Lukešová, A., Hill, P., Kováč, L’., Mock, A. and L’uptáčik, P. (2005). Feeding sources of invertebrates in the Ardovská cave and Domica cave sys-tems - preliminary results, in: K. Tajovský, J. Schlaghamerský and V. Pižl (eds.), Contributions to Soil Zoology in Central Europe I, Proceedings of the 7th Central European Workshop on Soil Zoology, Institute of Soil Biology AS CR, Cˇeské Budějovice, pp. 107-112.Google Scholar
  73. Nunez, F.S. and Crawford, C.S. (1976). Digestive enzymes of the desert millipede Orthoporus ornatus (Girard) (Diplopoda: Spirostreptidae). Comp. Biochem. Physiol. 55A: 141-145.Google Scholar
  74. Peters, R.H. and De Bernardi, R. (1987). Daphnia, Consilio Nationale dele Ricerche, Verbania Pallanza.Google Scholar
  75. Peterson, C.G., Vormittag, K.A. and Valett, H.M. (1998). Ingestion and digestion of epilithic algae by larval insects in a heavily grazed montane stream. Freshw. Biol. 40: 607-623.Google Scholar
  76. Pierce, T.G. (1978). Gut content of some lumbricid earthworms. Pedobiologia 18: 154-157.Google Scholar
  77. Pires, L.M.D., Ibelings, B.W., Brehm, M. and Van Donk, E. (2005). Comparing grazing on lake ses-ton by Dreissena and Daphnia: Lessons for biomanipulation. Microb. Ecol. 50: 242-252.Google Scholar
  78. Porazinska, D.L, Fountain, A.G, Nylen, T.H, Tranter, M., Virginia, R.A. and Wall, D.H. (2004). The biodiversity and biogeochemistry of cryoconite holes from McMurdo Dry Valley glaciers, Antarctica. Arct. Antarct. Alpine. Res. 36: 84-91.Google Scholar
  79. Porcella, R. and Walne, P.L. (1980). Microarchitecture and envelope development in Dismorphococcus globosus (Phacotaceae, Chlorophyceae). J. Phycol. 11: 186-202.Google Scholar
  80. Puel, F., Largeau, C. and Giraud, G. (1987). Occurrence of a resistant biopolymer in the outer cell walls of the parasitic alga Prototheca wickerhamii (Chlorococcales) ultrastructural and chemical studies. J. Phycol. 23: 649-656.CrossRefGoogle Scholar
  81. Randall, D., Burggren, W. and French, K. (1997). Eckert Animal Physiology: Mechanisms and Adaptations - 4th edition, Freeman and Company, New York.Google Scholar
  82. Ricci, C. and Balsamo, M. (2000). The biology and ecology of lotic rotifers and gastrotrichs. Freshw. Biol. 44: 15-28.Google Scholar
  83. Richard, G. W. and Rodger, M. (1973). Ecology of Yellowstone thermal effluent systems: Intersects of blue-green algae, grazing flies (Paracoenia, Ephydridae) and water mites (Partnuniella, Hydrachnellae). Hydrobiologia 41: 251-271.Google Scholar
  84. Roser, D.J., Melick, D.R., Ling, H.U. and Seppelt, R.D. (1992). Polyol and sugar content of terres-trial plants from continental Antarctica. Antarct. Sci. 4: 413-420.Google Scholar
  85. Rosi-Marshall, E.J. and Wallace, J.B. (2002). Invertebrate food webs along a stream resource gradient. Freshw. Biol. 47: 129-141.Google Scholar
  86. Salmon, J.T. (1962). A new species and redescriptions of Collembola from Antarctica. Pac. Insects 4: 887-894.Google Scholar
  87. Schaefer, M. (1990). The soil fauna of a beech forest on limestone: Trophic structures and energy budget. Oecologia 82: 129-136.Google Scholar
  88. Scheu, S. and Folger, M. (2004). Single and mixed diets in Collembola: effects on reproduction and stable isotope fractionation. Funct. Ecol. 18: 94-102.Google Scholar
  89. Schwabe, C.H. (1973). Vulkaninsei Surtsey: ein neues Okosystem entsteht. Umsch. Wiss.u. Techn. 73: 23-34.Google Scholar
  90. Seniczak, A. (1998). Preliminary studies on the influence of food on the development and morphol-ogy of Archegozetes longisetosus Aoki (Acari: Oribatida) in the laboratory conditions. Zesz. Nauk Akad. Tovarysztwa Roln. Bydgoszczy, Ochrona Srodowska 2: 175-180.Google Scholar
  91. Shachak, M. and Steinberger, Y. (1980). An algae-desert snail food chain: energy flow and soil turnover. Oekologia (Berl.) 146: 412-411.Google Scholar
  92. Shtina, E.A. (1984). Soil algae as a component of a biogeocenosis, in: E.N. Mishustin (ed.), Pochvennyje organismy kak komponent biogeotsenoza. Nauka, Moskva, pp. 66-81 [in Russian].Google Scholar
  93. Shtina, E.A., Kozlovskaja, L.S. and Nekrasova, K.A. (1981). About interactions of soil-dwelling oligochets and algae. Ekologiia 1: 55-60.Google Scholar
  94. Siepel, H. and Ruiter-Dijkman De, E.M. (1993). Feeding guilds of oribatid mites based on their car-bohydrate activities. Soil Biol. Biochem. 25: 1491-1497.Google Scholar
  95. Sinclair, B.J., Klok, C.J., Scott, M.B., Terblanche, J.S. and Chown, S.L. (2003). Diurnal variation in supercooling points of three species of Collembola from Cape Hallet, Antarctica. J. Insect Physiol. 49: 1049-1061.Google Scholar
  96. Small, R.W. (1987). A review of the prey of predatory soil nematodes. Pedobiologia 30: 179-206.Google Scholar
  97. Smith, K.G.V. (1989). An Introduction to the Immature Stages of British Flies. Handbooks for the identification of British insects 10, Royal Entomological Society of London, London.Google Scholar
  98. Smrž, J. and Cˇatská, V. (1987). Food selection of the field population of Tyrophagus putrescentiae (Schrank) (Acari: Acarida). Y. Angew. Entomol. 104: 329-335.Google Scholar
  99. Smrž, J. and Norton, R.A. (2004). Food selection and internal processing in Archegozetes longisetosus (Acari: Oribatida). Pedobiologia 48: 111-120.Google Scholar
  100. Sohlenius, B., Bostrom, S. and Jonsson, K.I. (2004). Occurrence of nematodes, tardigrades and rotifers on ice-free areas in East Antarctica. Pedobiologia 48: 395-408.Google Scholar
  101. Spaull, V.W. (1973). Distribution of nematode feeding groups at Signy Island, South Orkney Islands, with an estimate of their biomass and oxygen consumption. Br. Antarct. Surv. Bull. 37: 21-32.Google Scholar
  102. Sterner, R.W., Hagemeier, D.D., Smith, W.L. and Smith, R.F. (1993). Phytoplankton nutrient limita-tion and food quality for Daphnia. Limnol. Oceanogr. 38: 858-871.CrossRefGoogle Scholar
  103. Sterner, R.W., Hessen, D.O. (1994). Algal nutrient limitation and nutrition of aquatic herbivores. Annual review of Ecology and Systematics 25: 1-29.Google Scholar
  104. Sustr, V. (2001). Research on ecophysiology ofmillipedes in ISB: Mini-review and perspectives. Myriapodologica Czecho-Slovaca 1: 85-88.Google Scholar
  105. sˇustr, V., Elhottová, D., Krisˇtu°fek, V., Lukesˇová, A., Nováková, A., Tajovsky, K., Trˇiska, J. (2005). Ecophysiology of the cave isopod Mesoniscus graniger (Frivaldszky, 1865) (Crustacea: Isopoda). European J. Soil Biology 41: 69-75.Google Scholar
  106. Takeuchi, A., Kohshima, S. and Seko, K. (2001). TI Structure, formation, and darkening process of albedo- reducing material (cryoconite) on a Himalayan glacier: A granular algal mat growing on the glacier. Arct. Antarct. Alpine Res. 33: 115-122.Google Scholar
  107. Tarman, K. (1968). Anatomy, histology and of Oribatid gut and their digestion. Biol. vestn. Ljubljana 16: 67-76.Google Scholar
  108. Teoh, M.L., Chu, W.L., Marchant, H. and Ohang, S.M. (2004). Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J. Appl. Phycol. 16: 421-430.Google Scholar
  109. Tetík, K., NeCˇas, J., Sulek, J. and Olejníček, J. (1994). Resistance of zygospores and selective diges-tion of non-zygospore cells of the alga Chlamydomonas geitleri (Chlorophyta) by mosquito larvae. Arch. Hydrobiol. 130: 485-497.Google Scholar
  110. Tilbrook, P.J. (1977). Energy flow through a population of the collembolan Cryptopygus antarcticus, in: G.A. Llano (ed.), Adaptations within Antarctic Ecosystems, Proc. Third SCAR Symp. Antarc. Biol., Gulf Publ. Co., Texas, pp. 935-946.Google Scholar
  111. Van Donk, E. and Hessen, D.O. (1993). Grazing resistance in nutrient stressed phytoplankton. Oecologia 93: 508-511.Google Scholar
  112. Van Donk, E. and Hessen, D.O. (1995). Reduced digestibility of UV-stressed and nutrient-limited algae by Daphnia magna. Hydrobiologia 307: 147-151.Google Scholar
  113. Van Donk, E. and Hessen, D.O. (1996). Loss of flagella in the green alga Chlamydomonas reinhardtii due to in situ UV-exposure. Scientia Marina 60 (Supl.1): 107-112.Google Scholar
  114. Vincent, W.F. (1988). Microbial Ecosystems of Antarctica, Cambridge University Press, Cambridge.Google Scholar
  115. Vincent, W.F. and James, M.R. (1996). Biodiversity in extreme aquatic environments: lakes, ponds and streams of the Ross Sea sector, Antarctica. Biodivers. Conserv. 5: 1451-1471.Google Scholar
  116. Weisse, T. (2002). The significance of inter- and intraspecific variation in bacterivorous and herbivo-rous protists. Antonie van Leeuwenhoek 81: 327-341.PubMedGoogle Scholar
  117. Winterbourn, M.J. (1969). The distribution of algae and insects in hot spring thermal gradients at Waimangu, New Zealand. N. Z. J. Mar. Freshw. Res. 3: 459-465.CrossRefGoogle Scholar
  118. Wood, F.H. (1973a). Nematode feeding relationships. Feeding relationship of soil dwelling nematodes. Soil Biol. Biochem. 5: 593-601.Google Scholar
  119. Wood, F.H. (1973b). Biology of Aporcelaimellus sp. (Nematoda: Aporcelaimidae). Nematologica 19: 529-537.CrossRefGoogle Scholar
  120. Worland, M.R. and Lukešová, A. (2000). The effect of feeding on specific soil algae on the cold-har-diness of two Antarctic micro-arthropods (Alaskozetes antarcticus and Cryptopygus antarcticus). Polar Biol. 23: 766-774.Google Scholar
  121. Worland, M.R. and Lukešová, A. (2001). The application of differential scanning calorimetry and ice nucleation spectrometry to ecophysiological studies of algae, in: J. Elster, J. Seckbach, W. Vincent and O. Lhotsky (eds.), Proceedings of international conference, Algae and extreme environments - ecology and physiology, Nova Hedwigia (123), 571-583.Google Scholar
  122. Wynn-Williams, D.D. (1985). The biota of a lateral moraine and hinterland of the Blue Glacier, South Victoria Land, Antarctica. Br. Antarct. Surv. Bull. 66: 1-5.Google Scholar
  123. Xiong, F., Komenda, J., Kopecky, J. and Nedbal, L. (1997). Strategies of ultraviolet-B protection in microscopic algae. Physiol. Plant. 100: 378-388.Google Scholar
  124. Yeates, G.W., Bongers, T., de Goede, R.G.M., Freckman, D.W. and Georgieva, S.S. (1993). Feeding habits in soil nematode families and genera-an outline for soil ecologists. J. Nematol. 25: 315-331.PubMedGoogle Scholar
  125. , V., Kalina, T. and Sulek, J. (1985). Notes on the sexual reproduction of Chlamydomonas geitleri Ettl. Arch. Protistenk. 130: 343-353.Google Scholar
  126. Zettel, J., Zettel, U., Suter, C., Streich S. and Egger, B. (2002). Winter feeding behaviour of Ceratophysella sigillata (Collembola: Hypogastruridae) and the significance of eversible vesicles for resource utilisation. Pedobiologia 46: 404-413.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Alena Lukešová
    • 1
  • Jan Frouz
    • 1
  1. 1.Institute of Soil BiologyBiological Centre ASCRCzech Republic

Personalised recommendations