Intertidal Sandy Beaches as a Habitat Where Plastid Acquisition Processes are Ongoing

  • Noriko Okamoto
  • Isao Inouye
Part of the Cellular Origin, Life in Extreme Habitats and Astrobiology book series (COLE, volume 11)

An intertidal sandy beach is a constantly changing habitat, and, in that sense, it could be regarded as an extreme environment. It alternates between a seabed and a land with every tidal transition, and this alternation changes physical conditions such as beach morphology, water level, nutrients, oxygen level, salinity, temperature, light intensity, etc. Sand is an unstable substratum. Tides and waves constantly move sands on the submerged shore face. Even a single rainfall during the low tide changes the physical conditions, and a one-night storm could change even the landscape of the shore resulting in a catastrophe for its microbial communities.


Sandy Beach Sandy Shore Secondary Endosymbiosis Seepage Face Primary Endosymbiosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Archibald, J. M. (2005) Jumping genes and shrinking genomes - probing the evolution of eukaryotic photosynthesis with genomics. IUBMB Life 57: 539-547.CrossRefPubMedGoogle Scholar
  2. Asmus, H., Asmus, R., van Beusekom, J., Martens, P., Schanz, A., Blankenhorn, S., Göck, B., Kosche, K., Polte, P., Hussel, B. and Romanova, T. (2004) Working Group. Ecosystem Analysis of sedimentary coasts. Alfred Wegener Institute for Polar and Marine Research.
  3. Bhattacharya, D., Yoon, H. S. and Hackett, J. D. (2004) Photosynthetic eukaryotes unite: endosym-biosis connects the dots. Bioessays 26: 50-60.CrossRefPubMedGoogle Scholar
  4. Brown, A. C. and McLachlan, A. (1990) Ecologyof sandy shores, Elsevier Science Publishers B. V., Amsterdam, The Netherlands.Google Scholar
  5. Carson, R. (1955) The edge of the sea, Houghton Mifflin Co., Boston, Mass.Google Scholar
  6. Cavalier-Smith, T. (2002) Nucleomorphs: enslaved algal nuclei. Curr. Opin. Microbiol. 5: 612-619.CrossRefPubMedGoogle Scholar
  7. Cavalier-Smith, T. (2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Philos. Trans. R. Soc. Lond., B, Biol. Sci. 358: 109-133.CrossRefPubMedGoogle Scholar
  8. Douglas, S., Zauner, S., Fraunholz, M., Beaton, M., Penny, S., Deng, L. T., Wu, X. N., Reith, M., Cavalier-Smith, T. and Maier, U. G. (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410: 1091-1096.CrossRefPubMedGoogle Scholar
  9. Elliott, M., Nedwell, S., Jones, N. V., Read, S. J., Cutts, N. D. and Hemingway, K. L. (1998) Intertidal sand and mudflats and subtidal mobile sandbanks. An overview of dynamic and sensitivity char-acteristics for conservation management of marine SACs. UK Marine Social Areas of Conservation.
  10. Falkowski, P. G., Katz, M. E., Knoll, A. H., Quigg, A., Raven, J. A., Schofield, O. and Taylor, F. J. R. (2004) The evolution of modern eukaryotic phytoplankton. Science 305: 354-360.CrossRefPubMedGoogle Scholar
  11. Foster, K. W. and Smyth, R. D. (1980) Light antennas in phototactic algae. Microbiol. Rev. 44: 572-630.PubMedGoogle Scholar
  12. Gilson, P. R. and McFadden, G. I. (2002) Jam packed genomes - a preliminary, comparative analysis of nucleomorphs. Genetica 115: 13-28.CrossRefPubMedGoogle Scholar
  13. Gualtieri, P. (2001) Morphology of photoreceptorsystems in microalgae. Micron 32: 411-426.CrossRefPubMedGoogle Scholar
  14. Hackett, J. D., Anderson, D. M., Erdner, D. L. and Bhattacharya, D. (2004) Dinoflagellates: a remark-able evolutionary experiment. Am. J. Bot. 91:1523-1534.CrossRefGoogle Scholar
  15. Horiguchi, T. and Pienaar, R. N. (1992) Amphidinium latum (Dinophyceae), a sand-dwelling dinofla-gellate feeding on cryptomonads. Jpn. J. Phycol. (Sorui) 40: 353-363.Google Scholar
  16. Horiguchi, T. and Pienaar, R. N. (1994) Ultrastructure of a new marine sand-dwelling dinoflagellate Gymnodinium quadrilobatum sp. nov. (Dinophyceae) with special reference to its endosymbiotic algae. Eur. J. Phycol. 29: 237-45.CrossRefGoogle Scholar
  17. Keeling, P. J., Burger, G., Durnford, D. G., Lang, B. F., Lee, R. W., Pearlman, R. E., Roger, A. J. and Gray, M. W. (2005) The tree of eukaryotes. Trends Ecol. Evol. 20: 670-676.CrossRefPubMedGoogle Scholar
  18. Kingston, M. B. (1999) Wave effects on the vertical migration of two benthic microalgae: Hantzschia virgata var. intermedia and Euglena proxima. Estuaries 22: 81-91.CrossRefGoogle Scholar
  19. Kingston, M. B. (2002) Effect of subsurface nutrient supplies on the vertical migration of Euglena proxima (Euglenophyta). J. Phycol. 38: 872-880.CrossRefGoogle Scholar
  20. Larsen, J. (1988) An ultrastructural study ofAmphidinium poecilochroum(Dinophyceae), a phagotrophic dinoflagellate feeding on a small species of cryptophytes. Phycologia 27: 366-377.Google Scholar
  21. Larsen, J. and Patterson, D. J. (1990) Some flagellates (Protista) from tropical marine sediments. J. Nat. Hist. 24: 801-937.CrossRefGoogle Scholar
  22. Lee, W. J. and Patterson, D. J. (2000) Heterotrophic flagellates (Protista) from marine sediments of Botany Bay, Australia. J. Nat. Hist. 34: 483-562.Google Scholar
  23. MacIntyre, H. L., Geider, R. J. and Miller, D. C. (1996) Microphytobenthos: the ecological role of the ‘secret garden’ of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries 19: 186-201.CrossRefGoogle Scholar
  24. Masselink, G. and Turner, I. L. (1999) The effect of tides on beach morphodynamics, In: A. D. Short (ed.) Handbook of Beach and Shoreface Morphodynamics. John Wiley & Sons Ltd, Chichester, pp. 204-250.Google Scholar
  25. McFadden, G. I. (2001) Primary and secondary endosymbiosis and the origin of plastids. J. Phycol. 37: 951-959.CrossRefGoogle Scholar
  26. Melkonian, M. (1984) The eyespot apparatus of flagellated green algae: a critical review. Progr. Phycol. Res. 3: 193-268.Google Scholar
  27. Morden, C. W. and Sherwood, A. R. (2002) Continued evolutionary surprises among dinoflagellates. Proc. Natl. Acad. Sci. U.S.A. 99: 11558-11560.CrossRefPubMedGoogle Scholar
  28. Okamoto, N. and Inouye, I. (2005) A secondary symbiosis in progress? Science 310: 287.CrossRefPubMedGoogle Scholar
  29. Okamoto, N. and Inouye, I. (2006) Hatena arenicola gen. et sp. nov., a katablepharid undergoing probable plastid acquisition. Protist 157(4): 401-419.CrossRefPubMedGoogle Scholar
  30. Saburova, M. A. and Polikarpov, I. G. (2003) Diatom activity within soft sediments: behavioural and physiological processes. Mar. Ecol. Prog. Ser. 251: 115-126.CrossRefGoogle Scholar
  31. Schnepf, E. and Elbrächter, M. (1999) Dinophyte chloroplasts and phylogeny - a review. Grana 38: 81-97.Google Scholar
  32. Short A. D. (1999a) 1. Beaches, In: A. D. Short (ed.) Handbook of beach and shoreface morphody-namics, John Wiley & Sons Ltd, Chichester, UK. pp. 1-20.Google Scholar
  33. Short, A. D. (1999b) 1. Beaches, In: A. D. Short (ed.) Handbook of beach and shoreface morphody-namics, John Wiley & Sons Ltd, Chichester, UK. pp. 1-20.Google Scholar
  34. Tamura, M., Shimada, S. and Horiguchi, T. (2005) Galeidinium rugatum gen. et sp. nov. (Dinophyceae), a new coccoid dinoflagellate with a diatom endosymbiont. J. Phycol. 41: 658-671.CrossRefGoogle Scholar
  35. Yoshimatsu, S., Toriumi, S. and Dodge, J. D. (2000) Light and scanning microscopy of two benthic species of Amphidiniopsis (Dinophyceae), Amphidiniopsis hexagona sp. nov. and Amphidiniopsis swedmarkii from Japan. Phycol. Res. 48: 107-113.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Noriko Okamoto
    • 1
  • Isao Inouye
    • 2
  1. 1.School of BotanyUniversity of MelbourneParkvilleAustralia
  2. 2.Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukubaJapan

Personalised recommendations