Skip to main content

Ecotoxicological Effects

  • Chapter
Book cover Risk Assessment of Chemicals

Ecotoxicology is the study of toxic effects of substances on species in ecosystems and involves knowledge of three main disciplines: toxicology, ecology and chemistry (Figure 7.1). Truhaut [2] coined the term ecotoxicology and included effects on humans in his definition, man being part of ecosystems. The current tendency is to include the effects of chemicals on all species in the biosphere in the definition of ecotoxicology [3]. However, in this section, we will not consider effects on man. Environmental risk assessment (ERA) shares many methodological aspects with human health risk assessment (HRA). However, there are a number of fundamental differences between ERA and HRA related to the scope of ERA which covers ecosystems and the biosphere. Fundamental aspects of ERA are discussed in the next section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van Leeuwen CJ. 1993. About and beyond ecotoxicological limits. H20 11:282-292 [in Dutch with a summary in English].

    Google Scholar 

  2. Truhaut R. 1977. Ecotoxicology: objectives, principles and perspectives. Ecotoxicol Environ Saf1:151-173.

    Article  CAS  PubMed  Google Scholar 

  3. Newman MC, Unger MA. 2003. Fundamentals of Ecotoxicology, 2nd edition. Lewis publishers, Boca Raton, FL.

    Google Scholar 

  4. Organization for Economic Co-operation and Development. 1989. Report of the OECD workshop on ecological effects assessment. OECD Environment Monographs 26. OECD, Paris, France.

    Google Scholar 

  5. Suter GW. 1993. Ecological Risk Assessment. Lewis Publ, Chelsea, MI.

    Google Scholar 

  6. Suter GW II, Efroymson RA, Sample BE, Jones DS. 2000. Ecological Risk Assessment for Contaminated Sites. Lewis Publishers, Boca Raton, FL.

    Google Scholar 

  7. Hoffman DJ, Rattner BA, Burton GA Jr, Cairns J Jr. 2003. Handbook of Ecotoxicology. 2nd edition, Lewis publishers, Boca Raton, FL.

    Google Scholar 

  8. Ehrlich PR, Wilson EO. 1991. Biodiversity studies: Science and policy. Science253:758-762.

    Article  PubMed  CAS  Google Scholar 

  9. Central Bureau for Statistics. 1989. Number of plant and animal species. Kwartaalbericht Milieu4:15-21, The Hague, The Netherlands [in Dutch].

    Google Scholar 

  10. Health Council of the Netherlands. 1989. Assessing the risk of toxic chemicals for ecosystems. Report No. 1988/28E, The Hague, The Netherlands.

    Google Scholar 

  11. Van Leeuwen CJ. 1990. Ecotoxicological effects assessment in the Netherlands, recent developments. Environ Management14:779-792.

    Article  Google Scholar 

  12. Stephan CE. 1986. Proposed goal of applied aquatic toxicology. In: Poston TM, Purdy R, eds, Aquatic Toxicology and Environmental Fate(Ninth Volume). STP 921. American Society for Testing and Materials, Philadelphia, PA, pp 3-10.

    Chapter  Google Scholar 

  13. Cairns J Jr. 1986. The myth of the most sensitive species. Bioscience36:670-672.

    Article  Google Scholar 

  14. Commission of the European Communities. 2003. Technical Guidance Document in support of Commission Directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No 1488/94 on risk assessment for existing substances and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Joint Research Centre, European Chemicals Bureau, Brussels, Belgium.

    Google Scholar 

  15. National Environmental Policy Plan. 1989. To choose or to lose 1990-1994. Second Chamber of the States General, session 1988-1989, 21137, Nos 1-2. The Hague, The Netherlands.

    Google Scholar 

  16. Stephan CE, Mount DI, Hansen DJ, Gentile JH, Chapman GA, Brungs WA. 1985. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. Report PB85-227049, US Environmental Protection Agency, Springfield, VA.

    Google Scholar 

  17. Van Straalen NM, Van Leeuwen CJ. 2002. European history of species sensitivity distributions. In: Posthuma L. Suter GW, Traas TP, eds, Species Sensitivity Distributions in Ecotoxicology. Lewis, Boca Raton FL, pp 19-34.

    Google Scholar 

  18. Nienhuis PH, Buijse AD, Leuven RSEW, Smits AJM, de Nooij RJW Samborska EM. 2002. Ecological Rehabilitation of the lowland basin of the river Rhine (NW Europe). Hydrobiologia478:53-72.

    Article  Google Scholar 

  19. Porta M, Zumeta E, 2002. Implementing the Stockholm Treaty on Persistent Organic Pollutants. Occ Environ Med59:651-652.

    Article  CAS  Google Scholar 

  20. Fresco LO, Kroonenberg SB. 1992. Time and spatial scales in ecological sustainability. Land Use Policy, July:155-168.

    Google Scholar 

  21. McCarty L and Mackay D. 1993. Enhancing ecotoxicological modeling and assessment: body residues and modes of toxic action. Environ Sci Technol27:1719- 1728.

    Article  Google Scholar 

  22. Sijm DTHM, Hermens JLM. 1999. Internal effect concentrations: link between bioaccumulation and ecotoxicity for organic chemicals. In: Beek B, ed, The Handbook of Environmental Chemistry, Volume 2- J. Bioaccumulation. New aspects and developments. Springer-Verlag, Berlin, GDR, pp. 167-199.

    Google Scholar 

  23. Escher BI, Hermens JLM. 2002. Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects. Environ Sci Technol36:4201-4217.

    Article  CAS  PubMed  Google Scholar 

  24. Vaes WHJ, Urrestarazu Ramos E, Verhaar HJM, Hermens JLM. 1998. Acute toxicity of nonpolar versus polar narcosis: is there a difference? Environ Toxicol Chem 17:1380-1384.

    Article  CAS  Google Scholar 

  25. DiToro DM, McGrath J, Hansen DJ. 2000. Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. I Water and tissue. Environ Toxicol Chem19:1951-1970.

    Article  CAS  Google Scholar 

  26. DiToro DM, McGrath J. 2000. Technical basis for narcotic chemicals and polycyclic aromatic hydrocarbon criteria. II Mixtures and sediments. Environ Toxicol Chem19:1971–1982.

    Article  CAS  Google Scholar 

  27. Traas TP, Van Wezel AP, Hermens JLM, Zorn M, Van Hattum AGM, Van Leeuwen CJ. 2004. Environmental quality criteria for organic chemicals predicted from internal effect concentrations and a food web model. Environ Toxicol Chem23:2518-2527.

    Article  CAS  PubMed  Google Scholar 

  28. Verbruggen EMJ. 2004. Environmental Risk Limits for mineral oil (total petroleum hydrocarbons) Report 601501021, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands [available via www.rivm.nl].

    Google Scholar 

  29. Barron MG, Hansen JA, Lipton J. 2002. Association between contaminant tissue residues and effects in aquatic organisms. Rev Environ Contam Toxicol173:1- 37.

    PubMed  Google Scholar 

  30. Verhaar HJM, Van Leeuwen CJ, Hermens JLM. 1992. Classifying environmental pollutants. 1: Structureactivity relationships for prediction of aquatic toxicity. Chemosphere25:471-491.

    Article  CAS  Google Scholar 

  31. Russom CL, Bradbury SP, Broderius SJ, Hammermeister DE, Drummond RA.1997. Predicting modes of toxic action from chemical structure: acute toxicity in the fathead minnow (Pimephales promelas). Environ Toxicol Chem16:948–967.

    Article  CAS  Google Scholar 

  32. Van Der Kooy LA, Van De Meent D, Van Leeuwen CJ, Bruggeman WA. 1991. Deriving quality criteria for water and sediment from the results of aquatic toxicity tests and product standards: Application of the equilibrium partitioning theory. Water Res25:697-705.

    Article  Google Scholar 

  33. Van Leeuwen CJ, Van Der Zandt PTJ, Aldenberg T, Verhaar HJM, Hermens JLM. 1992. Application of QSARs, extrapolation and equilibrium partitioning in aquatic effects assessment. I Narcotic industrial pollutants. Environ Toxicol Chem11:267-282.

    Article  Google Scholar 

  34. Larsson P, Hamrin S, Okla L. 1991. Factors determining the uptake of persistent pollutants in an eel population (Anguilla anguilla L). Environ Pollut69:39-50.

    CAS  PubMed  Google Scholar 

  35. Hamers T, van den Brink OJ, Mos L, van der Linden SC, Legler J, Koeman JH, Murk AJ. 2003. Estrogenic and esterase-inhibiting potency in rainwater in relation to pesticide concentrations, sampling season and location. Environ Pollut123:47-65.

    Article  CAS  PubMed  Google Scholar 

  36. Kelly BC, Gobas FAPC. 2003. An arctic terrestrial foodchain bioaccumulation model for persistent organic pollutants. Environ Sci Technol37:2966-2974.

    Article  CAS  PubMed  Google Scholar 

  37. Crane M, Newman MC, Chapman PF, Fenlon J. 2002. Risk Assessment with Time-to-Event Models. Lewis publishers, Boca Raton, FL.

    Google Scholar 

  38. Kooijman SALM. 2000. Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  39. Stigliani WM. 1989. Changes in valued ‘‘capacities’’ of soils and sediments as indicators of non-linear and timedelayed environmental effects. Environ Monit Assessm 10:245-307.

    Article  Google Scholar 

  40. Vijver MG, Vink JPM, Miermans CJH, Van Gestel CAM. 2003. Oral sealing using glue: a new method to distinguish between intestinal and dermal uptake of metals in earthworms. Soil Biol Biochem35:125-132.

    Article  CAS  Google Scholar 

  41. Jager T, Fleuren RHLJ, Hoogendoorn AM, De Korte G. 2003. Elucidating the routes of exposure for organic chemicals in the earthworm, Eisenia andrei (Oligochaeta). Environ Sci Technol2003:3399-3404.

    Article  CAS  Google Scholar 

  42. Organization for Economic Co-operation and Development. 1993. Report of the OECD workshop on application of simple models for exposure assessment. OECD Environment Monographs 69. OECD, Paris, France.

    Google Scholar 

  43. Peters RH. 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  44. Hendriks AJ. 1999. Allometric scaling of rate, age and density parameters in ecological models. Oikos86:293- 310.

    Article  Google Scholar 

  45. Jaworska J, Dimitrov S, Nikolova N, Mekenyan O, 2002. Probabilistic assessment of biodegradability based on metabolic pathways: CATABOL system. SAR QSAR Environ Res3:307-323.

    Article  CAS  Google Scholar 

  46. Organization for Economic Co-operation and Development. 2006. Freshwater Alga and Cyanobacteria, growth inhibition test. Guideline for testing of chemicals, No. 201. OECD Paris, France.

    Google Scholar 

  47. Rand GM. 1995. Fundamentals of Aquatic Toxicology, 2nd edition. CRC Press, Washington, DC.

    Google Scholar 

  48. Mount DI, Brungs WA. 1967. A simplified dosing apparatus for fish toxicology studies. Water Res1:21-29.

    Article  CAS  Google Scholar 

  49. Anonymous, 2004. Fish dietary bioaccumulation study protocol, based on a version adapted by the TC NES subgroup on PBTs of the original protocol, January 20, 2004. ExxonMobil Biomedical Science, Inc (EMBSI).

    Google Scholar 

  50. Newman MC. 1995. Quantitative Methods in Aquatic Ecotoxicology. Lewis publishers, Boca Raton FL.

    Google Scholar 

  51. Slob W. 2002. Dose-response modelling of continuous endpoints. Toxicol Sci66:298-312.

    Article  CAS  PubMed  Google Scholar 

  52. Hoekstra J. 1991. Estimation of the LC50, a review. Environmetrics2:139-152.

    Article  Google Scholar 

  53. De Bruijn J, Hof M. 1997. How to measure no effect. Part IV: How acceptable is the ECx from an environmental policy point of view? Environmetrics8:263-267.

    Article  Google Scholar 

  54. Slob W, Moerbeek M, Rauniomaa E, Piersma AH. 2005. A statistical evaluation of toxicity study design for the estimation of the benchmark dose in continuous endpoints. Toxicol Sci84:167-185.

    Article  CAS  PubMed  Google Scholar 

  55. Jager T, Heugens EWH, Kooijman SALM. 2006. Making sense of ecotoxicological test results: towards application of process-based models. Ecotoxicology15:305-314.

    Article  CAS  PubMed  Google Scholar 

  56. Calow P. ed 1993. Handbook of Ecotoxicology. Blackwell Sci Publ, London, UK.

    Google Scholar 

  57. Adams WJ and Rowlands CD. 2003. Aquatic toxicology test methods. In Hoffman DJ, Rattner BA, Burton GA Jr, Cairns J Jr, eds, Handbook of Ecotoxicology, 2nd edition. Lewis publishers, Boca Raton FL, pp 19-43.

    Google Scholar 

  58. Organization for Economic Co-operation and Development. 2006. 16th Addendum to the OECD Guidelines for the Testing of Chemicals. OECD, Paris, France.

    Google Scholar 

  59. Organization for Economic Co-operation and Development. 2004. Daphnia sp., acute immobilization test. Guideline for testing of chemicals, No. 202. OECD, Paris, France.

    Google Scholar 

  60. Organization for Economic Co-operation and Development. 1992. Fish, acute toxicity test. Guideline for testing of chemicals, No. 203. OECD, Paris, France.

    Google Scholar 

  61. Organization for Economic Co-operation and Development. 2006. Lemna sp. Growth inhibition test. Guideline for testing of chemicals, No. 221. OECD, Paris, France.

    Google Scholar 

  62. Klaine SJ, Lewis MA, Knuteson SL. 2003. Phytotoxicity. In: Hoffman DJ, Rattner BA, Burton GA Jr, Cairns J Jr, eds, Handbook of Ecotoxicology, 2nd edition. Lewis Publishers, Boca Raton FL, pp. 191-218.

    Google Scholar 

  63. Weyers A, Vollmer G. 2000. Algal growth inhibition: effect of the choice of growth rate or biomass as endpoint on the classification and labelling of new substances notified in the EU. Chemosphere41:1007-1010.

    Article  CAS  PubMed  Google Scholar 

  64. Eberius M, Guido Mennicken G, Ilka Reuter I, Vandernhirtz J. 2002. Sensitivity of different growth inhibition tests-just a question of mathematical calculation? theory and practice for algae and duckweed. Ecotoxicology11: 293-297.

    Article  PubMed  Google Scholar 

  65. Kooijman SALM, Bedaux JJM. 1996. The Analysis of Aquatic Toxicity Data. VU University press, Amsterdam, The Netherlands.

    Google Scholar 

  66. Van Leeuwen CJ, Rijkeboer M, Niebeek G. 1986. Population dynamics of Daphnia magnaas modified by chronic bromide stress. Hydrobiologia133:277-285.

    Article  Google Scholar 

  67. Hirsch R, Ternes T, Haberer K, Kratz K. 1999. Occurrence of antibiotics in the aquatic environment. Sci Total Environ225:109-118.

    Article  CAS  PubMed  Google Scholar 

  68. Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaug SD, Barber LB, Buxton HT. 2002. Pharmaceuticals, Hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: A national reconnaissance. Environ Sci Technol36:1202-1211.

    Article  CAS  PubMed  Google Scholar 

  69. Organization for economic co-operation and development. 1984. Activated sludge respiration inhibition. Guideline for testing of chemicals, No. 209. OECD, Paris, France.

    Google Scholar 

  70. Gendig C, Domogala G, Agnoli F, Udo Pagga U, Strotmann UJ. 2003. Evaluation and further development of the activated sludge respiration inhibition test. Chemosphere52:143-149.

    Article  CAS  PubMed  Google Scholar 

  71. Organization for Economic Co-operation and Development. 1998. Daphnia magna reproduction test. Guideline for testing of chemicals, No. 211. OECD, Paris, France.

    Google Scholar 

  72. Van Leeuwen CJ, Niebeek G, Rijkeboer M. 1987. Effects of chemical stress on the population dynamics of Daphnia magna: A comparison of two test procedures. Ecotoxicol Environ Saf14:1-11.

    Article  PubMed  Google Scholar 

  73. Mount DI, Norberg TJ. 1984. A seven-day life cycle cladoceran toxicity test. Environ Toxicol Chem3:425- 434.

    Article  CAS  Google Scholar 

  74. American Society for Testing and Materials. 1989. Standard guide for conducting three-brood renewal toxicity tests with Ceriodaphnia dubia. In: Annual Book of ASTM Standards, Vol 11.01, E 1295. American Society for Testing and Materials, Philadelphia, PA, pp. 879-897.

    Google Scholar 

  75. Versteeg DJ, Stalmans M, Dyer SD, Janssen C. 1997. Ceriodaphniaand Daphnia: a comparison of their sensitivity to xenobiotics and utility as a test species. Chemosphere34:869-892.

    Article  CAS  Google Scholar 

  76. McKim JM. 1985. Evaluation of tests with early life stages of fish for predicting long-term toxicity. J Fish Res Can34:1148-1154.

    Google Scholar 

  77. Van Leeuwen CJ, Griffioen PS, Vergouw WHA, Maas- Diepeveen H. 1985. Differences in susceptibility of early life stages of rainbow trout (Salmo gairdneri)to environmental pollutants. Aquat Toxicol7:59-78.

    Article  Google Scholar 

  78. Organization for Economic Co-operation and Development. 1992. Fish early-life stage toxicity test. Guideline for testing of chemicals 210. OECD, Paris, France.

    Google Scholar 

  79. Environment Canada. 1992. Biological test method: Toxicity tests using early life stages of salmonid fish (rainbow trout, coho salmon, or atlantic salmon). Environmental Protection Series, Report EPS 1/RM/28, Ottawa, Ontario, Canada.

    Google Scholar 

  80. Campbell PJ, Arnold DJS, Brock TCM, Grandy NJ, Heger W, Heimbach F, Maund SJ and Streloke M. 1999. Guidance document on higher-tier aquatic risk assessment for pesticides (HARAP), SETAC-Europe/ OECD/EC Workshop. Lacanau Ocèan, France, SETACEurope, Brussels, Belgium.

    Google Scholar 

  81. Giddings J, Heger W, Brock T, Heimbach F, Maund S, Norman S, Ratte H, Schäfers C and Streloke M (Eds). 2002. Community-level aquatic system studies – Interpretation criteria (CLASSIC). Fraunhofer Institute, Schmallenberg, Germany; SETAC, Pensacola, FL.

    Google Scholar 

  82. Allen JD, Daniels RE. 1982. Life table evaluation of chronic exposure of Eurytemora affines (Copepoda) to kepone. Mar Biol(Berlin) 66:179-184.

    Article  Google Scholar 

  83. Van Straalen NM, Schobben JHM, De Goede RGM. 1989. Population consequences of cadmium toxicity in soil microarthropods. Ecotoxicol Environ Saf17:190- 204.

    Article  PubMed  Google Scholar 

  84. Crommentuijn T. 1997. Life-table study with the springail Folsomia candida (Willem) exposed to cadmium, chlorpyrifos and triphenyltin hydroxide. In: Van Straalen NM, Løkke H, eds, Ecological Risk Assessment of Contaminants in Soil. Chapman & Hall, London, UK, pp. 275-291.

    Google Scholar 

  85. Smit CE, Stam EM, Baas N, Hollander R, Van Gestel CAM. 2004. Effects of dietary zinc exposure on the life history of the parthenogenetic springtail Folsomia candida(Collembola: Isotomidae). Environ Toxicol Chem23:1719-1724.

    Article  CAS  PubMed  Google Scholar 

  86. Kammenga JE, Van Koert PHG, Koeman JH, Bakker J. 1997. Fitness consequences of toxic stress evaluated within the context of phenotypic plasticity. Ecol Appl 7:726-734.

    Article  Google Scholar 

  87. Forbes VE, Calow P. 1999. Is the per capita rate of increase a good measure of population-level effects in ecotoxicology? Environ Toxicol Chem18:1544-1556.

    Article  CAS  Google Scholar 

  88. Kooijman SALM, Hanstveit AO, Oldersma H. 1983. Parametric analyses of population growth in bioassays. Water Res17:527-538.

    Article  CAS  Google Scholar 

  89. Klepper O, Traas TP, Schouten AJ, Korthals GW, De Zwart D. 1999. Estimating the effect on soil organisms of exceeding no-observed effect concentrations (NOECs) of persistent toxicants. Ecotoxicology8:9-21.

    Article  CAS  Google Scholar 

  90. Van den Brink PJ, Hattink J, Bransen F, Van Donk E, Brock TCM. 2000. Impact of the fungicide carbendazim in freshwater microcosms II. Zooplankton, primary producers and final conclusions. Aquatic Toxicol48:251- 264.

    Article  Google Scholar 

  91. Roughgarden J. 1971. Density-dependent natural selection. Ecology52:453-468.

    Article  Google Scholar 

  92. Traas TP, Janse JH, Van den Brink PJ, Brock TCM, Aldenberg T. 2004. A freshwater food web model for the combined effects of nutrients and insicticide stress and subsequent recovery. Environ Toxicol Chem23:521-529.

    Article  CAS  PubMed  Google Scholar 

  93. National Research Council. 1981. Testing for effects of chemicals on ecosystems. National Academy Press, Washington, DC.

    Google Scholar 

  94. Organization for Economic Co-operation and Development. 1992. Report of the OECD workshop on the extrapolation of laboratory aquatic toxicity data to the real environment. OECD Environment Monographs 59. OECD, Paris, France.

    Google Scholar 

  95. Hedtke SF. 1984. Structure and function of copperstressed aquatic microcosms. Aquat Toxicol5:227-244.

    Article  CAS  Google Scholar 

  96. Cuppen JGM, Van den Brink PJ, Van der Woude H, Zwaardemaker N, Brock TCM. 1997. Sensitivity of macrophyte-dominated freshwater microcosms to chronic levels of the herbicide Linuron II. Community metabolism and invertebrates. Ecotox Environ Saf38:25- 35.

    Article  CAS  Google Scholar 

  97. Emans HJB, Okkerman PC, Van De Plassche EJ, Sparenburg PM, Canton JH. 1993. Validation of some extrapolation methods used for effect assessment. Environ Toxicol Chem12:2139-2154.

    Article  CAS  Google Scholar 

  98. De Jong FMW, Brock TCM, Foekema EM, Leeuwangh P. 2007. Guidance for summarizing of aquatic micro- and mesocosm studies. Dutch platform for the Assessment of Higher Tier Studies. RIVM Bilthoven, The Netherlands, in prep.

    Google Scholar 

  99. Brock TCM, Van Wijngaarden RPA, Van Geest, PJ. 2000. Ecological risks of pesticides in freshwater ecosystems. Part 2: Insecticides. Report 089, Alterra, Wageningen, The Netherlands.

    Google Scholar 

  100. La Point TW, Perry JA. 1989. Use of experimental ecosystems in regulatory decisionmaking. Environ Management13:539-544.

    Article  Google Scholar 

  101. Crossland NO. 1990. The role of mesocosm studies in pesticide registration. Brighton Crop Protection Conference. Pests and Diseases6B-1:499-508.

    Google Scholar 

  102. Crossland NO, Wolff CJM. 1988. Outdoor ponds: Their construction, management, and use in experimental ecotoxicology. In: Hutzinger O, ed, The Handbook of Environmental Chemistry, Vol. 2/D, Springer-Verlag, Berlin, Germany, pp 51-69.

    Google Scholar 

  103. Organization for Economic Co-operation and Development. 2006. Guidance document on simulated freshwater lentic field tests (outdoor microcosms and mesocosms). OECD series on testing and assessment number 53. OECD, Paris, France.

    Google Scholar 

  104. Van Leeuwen CJ, Van De Plassche EJ, Canton JH. 1994. The role of field tests in hazard assessment. In: Hill IR, Heimbach F, Leeuwangh P, Matthiessen P, eds, Freshwater Field Tests for Hazard Assessment of Chemicals. Lewis Publ, Chelsea, MI, pp 339-453.

    Google Scholar 

  105. Van den Brink PJ, Ter Braak CJF. 1998. Multivariate analysis of stress in experimental ecosystems by principal response curves and similarity analysis. Aquatic Ecol 32:163-178.

    Article  Google Scholar 

  106. Van den Brink PJ, Ter Braak CJF. 1999. Principal Response Curves: analysis of time-dependent multivariate responses of a biological community to stress. Environ Toxicol Chem18:138-148.

    Article  Google Scholar 

  107. Korthals GW, Alexiev AD, Lexmond TM, Kammenga JE, Bongers T. 1996. Long-term effects of copper and pH on the nematode community in agroecosystems. Environ Toxicol Chem15:979-985.

    Article  CAS  Google Scholar 

  108. Van den Brink PJ, Brock TCM, Posthuma L. 2002. The value of the species sensitivity distribution concept for predicting field effects: (non-) confirmation of the concept using semi-field experiments. In: Posthuma L. Suter GW, Traas TP, eds, Species Sensitivity Distributions in Ecotoxicology. Lewis, Boca Raton, FL, pp 155-193.

    Google Scholar 

  109. Hamers T, Krogh PH. 1997. Predator-Prey Relationships in a two-species toxicity test system. Ecotox Environ Saf 37:203-212.

    Article  CAS  Google Scholar 

  110. Taub FB. 1989. Standardized aquatic microcosm: Development and testing. In: Boudou A, Ribeyre F, eds, Aquatic Ecotoxicology. CRC Press Inc. Boca Raton, FL, pp 47-94.

    Google Scholar 

  111. Kooijman SALM. 1985. Toxicity at population level. In: Cairns J Jr, ed, Multispecies Toxicity Testing. Pergamon Press, New York, NY, pp 143-164.

    Google Scholar 

  112. Organization for Economic Co-operation and Development. 1992. Report of the OECD workshop on effects assessment of chemicals in sediment. Environment Monographs 60. OECD, Paris, France.

    Google Scholar 

  113. Giesy JP, Hoke RA. 1989. Freshwater sediment toxicity bioassessment: Rationale for species selection and test design. J Great Lakes Res15:539-569.

    Article  CAS  Google Scholar 

  114. Malins DC, McCain BB, Brown DW, Varanasi U, Krahn MM, Myers MS, Chan S. 1987. Sediment-associated contaminants and liver diseases in bottom-dwelling fish. Hydrobiologia149:67-74.

    Article  CAS  Google Scholar 

  115. Van Urk G, Kerkum FCM. 1987. Chironomid mortality after the Sandoz accident and deformities in chironomid larvae due to sediment pollution in the Rhine. Aqua 4:191-196.

    Google Scholar 

  116. Milbrink G. 1980. Oligochaete communities in pollution biology. In: Brinkhurst RO, Cook DG, eds, Aquatic Oligochaete Biology. Plenum Press, New York, NY, pp 433-456.

    Google Scholar 

  117. Beurskens JEM, Barreveld GAJ, Mol HL, Van Munster B, Winkels HJ. 1993. Geochronology of priority pollutants in a sedimentation area of the river Rhine. Environ Toxicol Chem12:1549-1566.

    Article  CAS  Google Scholar 

  118. Traas TP, Stäb JA, Kramer PRG, Cofino WP, Aldenberg T. 1996. Modeling and risk assessment of tributyltin accumulation in the food web of a shallow freshwater lake. Environ Sci Technol30:1227-1237.

    Article  CAS  Google Scholar 

  119. Organization for Economic Co-operation and Development. 2004. Sediment-water Chironomid toxicity test using spiked sediment. Guideline for testing of chemicals 218. OECD, Paris, France.

    Google Scholar 

  120. Organization for Economic Co-operation and Development. 2004. Sediment-Water Chironomid Toxicity Test Using Spiked Water. Guideline for testing of chemicals 219. OECD, Paris, France.

    Google Scholar 

  121. Burton GA Jr, Denton DL, Ho K, Ireland DS. 2003. Sediment toxicity testing: issues and methods. In Hoffman DJ, Rattner BA, Burton GA Jr, Cairns J Jr, eds, Handbook of Ecotoxicology, 2nd edition.. Lewis publishers, Boca Raton, FL, pp. 111-150.

    Google Scholar 

  122. Van De Guchte C, Maas-Diepeveen H. 1988. Screening sediments for toxicity: A water concentration related problem. Proceedings of the 14th Annual Aquatic Toxicity Workshop, 2-4 November 1987. Can Tech Rep Fish Aquat Sci 1607, Toronto, Canada, pp 81-91.

    Google Scholar 

  123. Connell DW, Bowman M, Hawker D. 1988. Bioconcentration of chlorinated hydrocarbons from sediment by oligochaetes. Ecotoxicol Environ Saf 16:293-302.

    Article  CAS  PubMed  Google Scholar 

  124. Di Toro DM, Zarba CS, Hansen DJ, Berry WJ, Swartz RC, Cowan CE, Pavlou SP, Allen HE, Thomas NA, Paquin PR. 1991. Technical basis for establishing sediment quality criteria for non-ionic organic chemicals by using equilibrium partitioning. Environ Toxicol Chem 10:1541-1583.

    Article  Google Scholar 

  125. Thomann RV, Connolly JP, Parkerton TF. 1992. An equilibrium model of organic chemical accumulation in aquatic food webs with sediment interaction. Environ Toxicol Chem11:615-629.

    Article  CAS  Google Scholar 

  126. Kaag NHBM, Foekema EM, Scholten MCT, Van Straalen NM. 1997. Comparison of contaminant accumulation in three species of marine invertebrates with different feeding habits. Environ Toxicol Chem16:837–842.

    Article  CAS  Google Scholar 

  127. US Environmental Protection Agency. 1989. Briefing report to the EPA Science Advisory Board on the equilibrium partitioning approach to generating sediment quality criteria. Office of Water Regulations and Standards, Criteria and Standard Division, Washington, DC.

    Google Scholar 

  128. Wang F, Chapman PM. 1999. Biological implications of sulfide in sediment - a review focusing on sediment toxicity. Environ Toxicol Chem8:2526–2532.

    Article  Google Scholar 

  129. Dolfing J, Beurskens EM. 1995. The microbial logic and environmental significance of reductive dehalogenation. Adv Microbial Ecology 14:143-206.

    CAS  Google Scholar 

  130. Karickhoff SW, Brown DS, Scott TA. 1979. Sorption of hydrophobic pollutants on natural sediments. Water Res 13:241-248.

    Article  CAS  Google Scholar 

  131. Ziegenfuss PS, Renaudette WJ, Adams WJ. 1986. Methodology for assessing the acute toxicity of chemicals sorbed to sediments: Testing the equilibrium partitioning theory. In: Poston TM, Purdy R, eds, Aquatic Toxicology and Environmental Fate. Vol 9 STP 921. American Society for Testing and Materials, Philadelphia, PA, pp 479-493.

    Chapter  Google Scholar 

  132. Mayer P, Tolls J, Hermens JLM, Mackay D. 2003. Equilibrium sampling devices. Environ Sci Technol 37:184A-191A.

    Article  PubMed  Google Scholar 

  133. Kraaij, P Mayer, FJM Busser, M Van Het Bolscher M, Seinen W, Tolls J, Belfroid AC. 2003. Measured porewater concentrations make equilibrium partitioning work - A data analysis. Environ Sci Technol37:268-274.

    Google Scholar 

  134. Ter Laak TL, Agbo SO, Barendregt A, Hermens JLM. 2006. Freely dissolved concentrations of PAHs in soil pore water: Measurements via solid-phase extraction and consequences for soil tests. Environ Sci Technol40:1307- 1313.

    Article  CAS  PubMed  Google Scholar 

  135. Burton GA Jr. 1992. Assessing the toxicity of freshwater sediments. Environ Toxicol Chem10:1585-1627.

    Article  Google Scholar 

  136. Chapman PM. 1986. Sediment quality criteria from the sediment quality triad: An example. Environ Toxicol Chem5:957-964.

    Article  CAS  Google Scholar 

  137. Chapman PM. 1996. Presentation and interpretation of Sediment Quality Triad data. Ecotoxicology5:327-339.

    Article  Google Scholar 

  138. Ankley GT, Schubauer-Berigan MK. 1995. Background and overview of current sediment toxicity identification evaluation procedures. J Aquat Ecosys Health4:133- 149.

    Article  Google Scholar 

  139. Leslie HA, Ter Laak TL, Busser FJM, MHS Kraak MHS, Hermens JLM 2002. Bioconcentration of organic chemicals: is a solid-phase microextraction fiber a good surrogate for biota? Environ Sci Technol36:5399-5404.

    Article  CAS  PubMed  Google Scholar 

  140. Kosian, PA, Makynen EA, Monson PD, Mount DR, Spacie A, Mekenyan OG, Ankley GT. 1998. Application of toxicity-based fractionation techniques and structureactivity relationship models for the identification of phototoxic polycyclic aromatic hydrocarbons in sediment pore water. Environ Toxicol Chem17:1021-1033.

    Article  CAS  Google Scholar 

  141. Chapman PM, Anderson J. 2005. A decision-making framework for sediment contamination. Integr Environ Assess Manag1:163-173.

    Article  CAS  PubMed  Google Scholar 

  142. Simpson SL, Batley GE, Chariton AA, Stauber JL, King CK, Chapman JC, Hyne RV, Gale SA, Roach AC, Maher WA. 2005. Handbook for Sediment Quality Assessment. CSIRO, Bangor NSW, Australia.

    Google Scholar 

  143. Organization for Economic Co-operation and Development. 2006. Draft test guideline on sedimentwater Lumbriculustoxicity test using spiked sediment. OECD, Paris, France.

    Google Scholar 

  144. Nortcliff S. 2002. Standardisation of soil quality attributes. Agric Ecosys Environ88:161-168.

    Article  Google Scholar 

  145. Rutgers M, Van’t Verlaat IM, Wind B, Posthuma L, Breure AM. 1998. Rapid method for assessing pollutioninduced community tolerance in contaminated soil. Environ Toxicol Chem17:2210-2213.

    Article  Google Scholar 

  146. Organization for Economic Co-operation and Development. 1984. Earthworm acute toxicity tests. Guideline for testing of chemicals, no 207. OECD, Paris, France.

    Google Scholar 

  147. Van Gestel CAM. 1992. The influence of soil characteristics on the toxicity of chemicals for earthworms: A review. In: Greig-Smith PW, Becker H, Edwards PJ, Heimbach F, eds, Ecotoxicology of Earthworms. Intercept Ltd, Andover, UK., pp 44-54.

    Google Scholar 

  148. Van Gestel CAM, Van Straalen NM. 1994. Ecotoxicological test systems for terrestrial invertebrates. In: Donker MH, Eijsackers H, Heimbach F, eds, Ecotoxicology of Soil Organisms. Lewis Publ, London, UK, pp 205-229.

    Google Scholar 

  149. Van Gestel CAM, Rademaker MCJ, Van Straalen NM. 1995. Capacity controlling parameters and their impact on metal toxicity in soil invertebrates. In: Salomons W, Stigliani WM, eds, Biogeodynamics of Pollutants in Soils and Sediments. Springer Verlag, Berlin, Germany, pp. 171-192.

    Google Scholar 

  150. Jager T. 2004. Modeling ingestion as an exposure route for organic chemicals in earthworms (Oligochaeta). Ecotoxicol Environ Saf57:30-38.

    Article  CAS  PubMed  Google Scholar 

  151. Organization for Economic Co-operation and Development. 2004. Earthworm reproduction test. Guideline for testing of chemicals, No. 222. OECD, Paris, France.

    Google Scholar 

  152. Organization for Economic Co-operation and Development. 1998. Honeybees, acute contact toxicity test. Guideline for testing of chemicals 214. OECD, Paris, France.

    Google Scholar 

  153. Candolfi MP, Blümel S, Forster R, Bakker FM, Grimm C, Hassan SA, Heimbach U, Mead-Briggs MA, Reber B, Schmuck R, Vogt H. 2000. Guideline to evaluate side-effects of plant-protection products to non-target arthropods. IOBC/WPRS, Gent, Belgium.

    Google Scholar 

  154. Pekar S, Haddad CR. 2005. Can agrobiont spiders (Araneae) avoid a surface with pesticide residues? Pest Manage Sci61:1179-1185.

    Article  CAS  Google Scholar 

  155. Luttik R. 1998. Assessing repellency in a modified avian LC50 procedure removes the need for additional tests. Ecotox Environ Saf40:201-205.

    Article  CAS  Google Scholar 

  156. Binnie J, Cape JN, Mackie N, Leith ID. 2002. Exchange of organic solvents between the atmosphere and grass - the use of open top chambers. Sci Total Environ285:53- 67.

    Article  CAS  PubMed  Google Scholar 

  157. EPA. 1997. Ecological risk assessment guidance for Superfund. Interim Final Report 540-R-97-006, EPA Washington, DC.

    Google Scholar 

  158. Swartjes FA. 1999. Risk-based assessment of soil and groundwater quality in the Netherlands: standards and remediation urgency. Risk Anal19:235-1249.

    Google Scholar 

  159. Jensen J, Mesman M, eds. 2006. Ecological risk assessment of contaminated land - Decision support for site specific investigations. Report 711701047, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands [available via www.rivm.nl].

    Google Scholar 

  160. Blanck H. 2002. A critical review of procedures and approaches used for assessing pollution-induced community tolerance (PICT) in biotic communities. Human Ecol Risk Asess8:1003-1034.

    Article  Google Scholar 

  161. Boivin MEY, Breure AM, Posthuma L, Rutgers M. 2002. Determination of field effects of contaminantssignificance of pollution-induced community tolerance. Human Ecol Risk Asess8:1035-1055.

    Article  Google Scholar 

  162. Schmitt H, Van Beelen P, Tolls J, Van Leeuwen CJ. 2004. Pollution-induced community tolerance of soil microbial communities caused by the antibiotic sulfachloropyridazine. Environ Sci Technol38:1148- 1153.

    Article  CAS  PubMed  Google Scholar 

  163. Organization for Economic Co-operation and Development. 2006. Terrestrial plant test: seedling emergence and seedling growth test. Guideline for testing of chemicals 208. OECD, Paris, France.

    Google Scholar 

  164. Organization for Economic Co-operation and Development. 2006. Terrestrial plant test: vegetative vigour test. Guideline for testing of chemicals 227. OECD, Paris, France.

    Google Scholar 

  165. Boutin C, Elmegaard N, Kjær C. 2004. Toxicity testing of fifteen non-crop plant species with six herbicides in a greenhouse experiment: Implications for risk assessment. Ecotoxicology13:349-369.

    Article  CAS  PubMed  Google Scholar 

  166. Løkke H, Van Gestel CAM. 1998. Handbook of soil invertebrate toxicity tests. John Wiley & Sons, Chichester, UK.

    Google Scholar 

  167. Organization for Economic Co-operation and Development 2004. Enchytraied reproduction test. Guideline for testing of chemicals 220. OECD, Paris, France.

    Google Scholar 

  168. US Environmental Protection Agency. 1985. Avian single-dose oral LD50. USEPA Hazard Evaluation Division, standard evaluation procedure 540/9-85-007, Washington, DC.

    Google Scholar 

  169. Hart A, Balluff D, Barfknecht R, Chapman PF, Hawkes T, Joermann G, Leopold A, Luttik R. 2001. Avian effect assessment: a framework for contaminants studies. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola FL.

    Google Scholar 

  170. Organization for Economic Co-operation and Development. 2001. Guidance document on acute oral toxicity testing. OECD Environment, Health and Safety Publications Series on Testing and Assessment, No. 24. OECD, Paris, France.

    Google Scholar 

  171. Organization for Economic Co-operation and Development. 1984. Avian Dietary toxicity test. Guideline for testing of chemicals, No. 205. OECD, Paris, France.

    Google Scholar 

  172. Organization for Economic Co-operation and Development. 1984. Avian reproduction test. Guideline for testing of chemicals, No. 206. OECD, Paris, France.

    Google Scholar 

  173. Römbke J, Heimbach F, Hoy S, Kula C, Scott-Fordsmand J, Sousa J,. Stephenson G & Weeks J, eds. 2003. Effects of plant protection products on functional endpoints in soil (EPFES), Lisbon 24-26 April 2002. Society of Environmental Toxicology and Chemistry (SETAC), Pensacola FL.

    Google Scholar 

  174. Edwards CA. 2002. Assessing the effects of environmental pollutants on soil organisms, communities, processes and ecosystems. Eur J Soil Biol38:225-231.

    Article  CAS  Google Scholar 

  175. Van Wensem J. 1989. A terrestrial micro-ecosystem for measuring effects of pollutants on isopod-mediated litter decomposition. Hydrobiologia188/189:507-516.

    Google Scholar 

  176. Salminen J, Anh BT, Van Gestel CAM. 2001. Indirect effects of zinc on soil microbes via a keystone enchytraeid species. Environ Toxicol Chem20:1167– 1174.

    Article  CAS  PubMed  Google Scholar 

  177. Knacker T, van Gestel CAM, Jones SE, Soares AMVM, Schallnaβ HJ, Bernhard Förster B, Edwards CA. 2004. Ring-testing and field-validation of a terrestrial model ecosystem (TME) – an instrument for testing potentially harmful substances: conceptual approach and study design. Ecotoxicology13:9-27.

    Article  CAS  PubMed  Google Scholar 

  178. Dekker SC, Scheu S, Schröter D, Setälä H, Szanzer M, Traas TP. 2005. Towards a new generation of dynamic soil decomposer food web models. In: De Ruiter P, Wolters V, Moore JC, eds, Dynamic food webs: multispecies assemblages, ecosystem development, and environmental change. Academic Press, Burlington, USA, pp. 258-266.

    Google Scholar 

  179. Lloyd R. 1961. The toxicity of ammonia to rainbow trout (Salmo gairdneriRichardson). Water and Waste Treatm J 8:278-279.

    Google Scholar 

  180. Berry WJ, Hansen DJ, Mahony JD, Robson DL, Di Toro DM, Shipley BP, Rogers B, Corbin JM, Boothman WS.1996. Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile sulfide and interstitial water normalizations. Environ Toxicol Chem 15:2067–2079.

    Article  CAS  Google Scholar 

  181. Heugens EHW, Hendriks AJ, Dekker T, Van Straalen NM, Admiraal W. 2001. A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit Rev Toxicol31:47-284.

    Google Scholar 

  182. Bergema WF, Van Straalen NM. 1991. Ecological risks of increased bioavailability of cadmium and lead as a consequence of soil acidification. Report TCB91/04-R. Technical Committee on Soil Protection, The Hague, The Netherlands [in Dutch].

    Google Scholar 

  183. Brown VM. 1968. The calculation of the acute toxicity of mixtures of poisons to rainbow trout. Water Res2:723- 733.

    Article  CAS  Google Scholar 

  184. Hesterberg D, Stigliani WM, Imeson AC. 1992. Chemical time bombs: linkages to scenarios of socioeconomic development. Report 20. International Institute for Applied System Analysis, Laxenburg, Austria.

    Google Scholar 

  185. Van Straalen NM, Denneman CAJ. 1989. Ecotoxicological evaluation of soil quality criteria. Ecotoxicol Environ Saf18:241-251.

    Article  PubMed  Google Scholar 

  186. Heugens EHW, Tokkie LTB, Kraak MHS, Hendriks AJ, Van Straalen NM. 2006. Population growth of Dapnia magnainfluenced by multiple stressors – joint effects of temperature, food and cadmium. Environ Toxicol Chem 25:1399–1407.

    Article  CAS  PubMed  Google Scholar 

  187. Jagers op Akkerhuis G. 1994. Effects of walking activity and physical factors on the short term toxicity of deltamethrin spraying in adult epigeal money spiders (Linyphiidae). In: Donker MH, Eijsackers H, Heimbach F, eds, Ecotoxicology of Soil OrganismsLewis Publ, London, UK, pp 323-338.

    Google Scholar 

  188. Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC. 2001. Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem20:2383–2396.

    Article  PubMed  Google Scholar 

  189. Niyogi S, Wood CM. 2004. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ Sci Technol38:6177- 6192.

    Article  CAS  PubMed  Google Scholar 

  190. Paquin PR, Gorsuch JW, Apte S, Batley GE, Bowles KC, Campbell PGC, Delos CG, Di Toro DM, Dwyer RL, Galvez F, Gensemer RW, Goss GG, Hogstrand C, Janssen CR, McGeer JC, Naddy RB, Playle RC, Santote RC, Schneider W, Stubblefield WA, Wood CM, Wu KB 2002. The biotic ligand model: a historical overview. Comp Biochem Physiol Pt C133: 3-35.

    Google Scholar 

  191. Campbell PGC, Errecalde O, Fortin C, Hiriart-Baer VP, Vigneault B. 2002. Metal bioavailability to phytoplankton-applicability of the biotic ligand model. Comp Biochem Physiol Pt C133:189-206.

    Google Scholar 

  192. Santore RC, Mathew R, Paquin PR, DiToro DM. 2002. Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and Daphnia magna. Comp Biochem Physiol Pt C133:271-285

    Google Scholar 

  193. Borgmann U, Norwood WP, Dixon DG. 2004. Reevaluation of metal bioaccumulation and chronic toxicity in Hyalella azteca using saturation curves and the biotic ligand model. Environ Pollut131:469-484

    Article  CAS  PubMed  Google Scholar 

  194. De Schamphelaere KAC, Janssen CA. 2004. Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia magna. Environ Toxicol Chem23:1365-1375.

    Article  Google Scholar 

  195. Plackett RL, Hewlett PS. 1952. Quantal responses to mixtures of poisons. J Roy Stat Soc B14:141-163

    Google Scholar 

  196. Greco WR, Bravo G, Parsons JC. 1995. The search for synergy: a critical review from a response surface perspective. Pharmacol Rev 47:331-385.

    CAS  PubMed  Google Scholar 

  197. Sprague JB. 1973. The ABCs of pollutant bioassay using fish. In: Cairns J Jr, Dickson KL, eds, Biological Methods for the Assessment of Water Quality. STP 528, American Society for Testing and Materials, Philadelphia PA, pp 6- 30.

    Chapter  Google Scholar 

  198. European Inland Fisheries Advisory Commission. 1987. Revised report on combined effects on freshwater fish and other aquatic life. EIFAC Technical Paper 37 Rev. 1. FAO, Rome, Italy.

    Google Scholar 

  199. Könemann H. 1981. Fish toxicity tests with mixtures of more than two chemicals: A proposal for a quantitative approach and experimental results. Toxicology19:229- 238.

    Article  PubMed  Google Scholar 

  200. Hermens J, Canton H, Janssen P, De Jong R. 1984. Quantitative structure-activity relationships and mixture toxicity studies of chemicals with anaesthetic potency: Acute lethal and sublethal toxicity to Daphnia magna. Aquat Toxicol5:143-154

    Article  CAS  Google Scholar 

  201. Hermens J, Broekhuyzen E, Canton H, Wegman R. 1985. Quantitative structure-activity relationships and mixture toxicity studies of alcohols and chlorohydrocarbons: Effects on growth of Daphnia magna. Aquat Toxicol 6:209-217.

    Article  CAS  Google Scholar 

  202. Hermens J, Leeuwangh P, Musch A. 1984. Quantitative structure-activity relationships and mixture toxicity studies of chloro- and alkylanilines at an acute toxicity level to the guppy (Poecilia reticulata). Ecotoxicol Environ Saf8:388-394.

    Article  CAS  PubMed  Google Scholar 

  203. Deneer JW, Sinnige TL, Seinen W, Hermens JLM. 1988. The joint acute toxicity to Daphnia magnaof industrial organic chemicals at low concentrations. Aquat Toxicol 12:33-38.

    Article  CAS  Google Scholar 

  204. Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH. 2001. Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquatic Toxicol 56:13-32.

    Article  CAS  Google Scholar 

  205. Hermens J, Leeuwangh P. 1982. Joint toxicity of mixtures of 8 and 24 chemicals to the guppy (Poecilia reticulata). Ecotoxicol Environ Saf6:302-310.

    Article  CAS  PubMed  Google Scholar 

  206. Hermens J, Canton H, Steyger N, Wegman R. 1984. Joint effects of a mixture of 14 chemicals on reproduction of Daphnia magna. Aquat Toxicol5:315-322.

    Article  CAS  Google Scholar 

  207. Faust M, Altenburger R, Backhaus T, Blanck H, Boedeker W, Gramatica P, Hamer V, Scholze M, Vighi M, Grimme LH. 2003. Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action. Aquatic Toxicol63:43-63.

    Article  CAS  Google Scholar 

  208. Pedersen F, Petersen GI. 1996. Variability of species sensitivity to complex mixtures. Water Sci Technol 33:109-119.

    CAS  Google Scholar 

  209. Faust M, Altenburger R, Backhous T, Boedeker W, Scholze M, Grimme LH. 2000. Predictive assessment of the aquatic toxicity of multiple chemical mixtures. J Environ Qual29:1063-1068.

    Article  CAS  Google Scholar 

  210. Enserink EL, Maas-Diepeveen JL, Van Leeuwen CJ. 1991. Combined effects of metals: An ecotoxicological evaluation. Water Res25:679-687.

    Article  CAS  Google Scholar 

  211. Spehar RL, Fiandt JL. 1986. Acute and chronic effects of water quality criteria-bases metal mixtures on three aquatic species. Environ Toxicol Chem5:917-931.

    Article  CAS  Google Scholar 

  212. De Zwart D, Posthuma L. 2005. Complex mixture toxicity for single and multiple species: proposed methodologies. Environ Toxicol Chem24:2665-2676.

    Article  PubMed  Google Scholar 

  213. Van Straalen NM, Roelofs D. 2006. An Introduction to Ecological Genomics, Oxford University Press, Oxford UK.

    Google Scholar 

  214. Bradbury S, Feijtel T, Van Leeuwen K. 2004. Meeting the scientific needs of ecological risk assessment in a regulatory context. Environ Sci Technol38:463a-470a.

    Article  CAS  PubMed  Google Scholar 

  215. Tyler CR, Filby A, Iguchi, T, Kramer, V, Larsson, J, Van Aggelen G, Van Leeuwen, C, Viant, M and Tillitt, D. 2007. Molecular biology and risk assessment: evaluation of the potential roles of genomics in regulatory ecotoxicology. In: Application of Genomics to Tiered Testing. SETAC, Pellston, MI (submitted).

    Google Scholar 

  216. Snape JR, Maund SJ, Pickford DB, Hutchinson TH. 2004. Ecotoxicogenomics: the challenge of integrating genomics into aquatic and terrestrial ecotoxicology. Aquatic Toxicol67:143–154.

    Article  CAS  Google Scholar 

  217. Ankley GT, Daston GP, Degitz SJ, Denslow ND, Hoke RA, Kennedy SW, Miracle AL, Perkins EJ, Snape J, Tillitt DE, Tyler CR, Versteeg D. 2006. Toxicogenomics in regulatory ecotoxicology. Environ Sci Technol 40:4055-4065.

    Article  CAS  PubMed  Google Scholar 

  218. Hutchinson TH, Ankley GT, Segner H, Tyler CR. 2006. Screening and testing for endocrine disruption in fishbiomarkers as ‘‘signposts,’’ not ‘‘traffic lights,’’ in risk assessment. Env Health Persp114:106-114.

    Article  Google Scholar 

  219. Colborn T, Dumanoski D, Meyers JP. 1996. Our Stolen Future. How we are threatening our fertility, intelligence and survival-A scientific detective story. Penguin Books, Dutton, NY.

    Google Scholar 

  220. European Commission. 2007. Technical guidance documents on preparing the Chemical Safety Assessment, in prep. European Chemicals Bureau, Joint Research Centre, Ispra, Italy.

    Google Scholar 

  221. Hamers T, Kamstra JK, Sonneveld E, Murk AJ, Kester MHA, Andersson PL, Legler J, Brouwer A. 2006. In vitro profiling of the endocrine-disrupting potency of brominated flame retardants. Toxicol Sci92:157-173.

    Article  CAS  PubMed  Google Scholar 

  222. Sørmo EG, Jüssi I, Jüssi M, Braathen M, Skaare JU, Jenssen BM. 2005. Thyroid hormone status in gray seal (Halichoerus grypus)pups from the baltic sea and the atlantic ocean in relation to organochlorine pollutants. Environ Toxicol Chem24:610–616.

    Article  PubMed  Google Scholar 

  223. Risk Assessment Forum. 1992. Framework for ecological risk assessment. Report 630/R-92/001. US Environmental Protection Agency, Washington, DC.

    Google Scholar 

  224. US Environmental Protection Agency. 1984. Estimating “concern levels” for concentrations of chemical substances in the environment. Environmental Effect Branch, Health and Environmental Review Division, Washington, DC.

    Google Scholar 

  225. Posthuma L, Suter GW II, Traas TP. 2002. Species Sensitivity Distributions in Ecotoxicology. Lewis publishers Boca Raton, FL.

    Google Scholar 

  226. Aldenberg T, Jaworska JS. 2000. Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicol Environ Saf 46:1-18.

    Article  CAS  PubMed  Google Scholar 

  227. Aldenberg T, Slob W. 1993. Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotoxicol Environ Saf25:48-63.

    Article  CAS  PubMed  Google Scholar 

  228. Kooijman SALM. 1987. A safety factor for LC50 values allowing for differences in sensitivity among species. Water Res21:269-276.

    Article  CAS  Google Scholar 

  229. Wagner C, Løkke H. 1990. Estimation of ecotoxicological protection levels from NOEC toxicity data. Water Res 25:1237-1242.

    Article  Google Scholar 

  230. Van Vlaardingen PLA, Traas TP, Wintersen AM, Aldenberg T. 2004. ETX 2.0 - A Program to calculate Hazardous concentrations and fraction affected, based on normally distributed toxicity data. Report 601501028, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands [available from www.rivm.nl]

    Google Scholar 

  231. Aldenberg T. 1993. ETX 1.3a. A program to calculate confidence limits for hazardous concentrations based on small samples of toxicity data. Report 719102015. National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.

    Google Scholar 

  232. Slooff W, Canton JH. 1983. Comparison of the susceptibility of 11 freshwater species to 8 chemical compounds. II (Semi-)chronic toxicity tests. Aquat Toxicol4:271-282.

    Article  CAS  Google Scholar 

  233. Erickson RJ, Stephan CE. 1984. Calculating the final acute value for water quality criteria for aquatic organisms. Report 600/X-84-040. Environmental Research Laboratory-Duluth, Office of Research and Development, USEPA, Duluth, MN.

    Google Scholar 

  234. Chapman PM, Fairbrother A, D. Brown D. 1998. A critical evaluation of safety (uncertainty) factors for ecological risk assessment. Environ Toxicol Chem17:99- 108.

    Article  CAS  Google Scholar 

  235. Power M, L.S. McCarthy, LS. 1997. Fallacies in ecological risk assessment practices. Environ Sci Technol 31:370A-374A.

    Article  Google Scholar 

  236. Versteeg DJ, Belanger SE, Carr GJ. 1999. Understanding single species and model ecosystem sensitivity, A data based comparison. Environ Toxicol Chem18:1329-1346.

    Article  CAS  Google Scholar 

  237. Romijn CAF, Luttik R, Van De Meent D, Slooff W, Canton JH. 1993. Presentation and analysis of a general algorithm for risk assessment on secondary poisoning. Ecotoxicol Environ Saf26:61-85.

    Article  CAS  PubMed  Google Scholar 

  238. Romijn CAF, Luttik R, Van De Meent D, Slooff W, Canton JH. 1991. Presentation and analysis of a general algorithm for risk assessment on secondary poisoning. Part II. Terrestrial food chains. Report 679102007, National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands.

    Google Scholar 

  239. Lehman AJ. Untitled. 1954. Assoc. Food Drug Off Quart Bull18:66.

    Google Scholar 

  240. Mineau P, Baril A, Collins BT, Duffe J, Joerman G, Luttik R. 2001. Pesticide acute toxicity reference values for birds. Rev Environ Contam Toxicol170:13-74.

    CAS  PubMed  Google Scholar 

  241. Aldenberg T, Luttik R. 2002. Extrapolation factors for tiny toxicity data sets from Species Sensitivity Distributions with known standard deviation. In: Posthuma L, Suter GW II, Traas TP, eds, Species Sensitivity Distributions in ecotoxicology. Lewis, Boca Raton FL, pp 103-118.

    Google Scholar 

  242. Macintosh DL, Suter II GW, Hoffman FO. 1992. Model of PCB and mercury exposure to mink and great blue heron inhabiting the off-site environment downstream from the US Department of Energy Oak Ridge Reservation. ORNL/ER-90. Oak Ridge National Library, Oak Ridge, TN.

    Google Scholar 

  243. Luttik R, Aldenberg T. 1997. Extrapolation factors for small samples of pesticide toxicity data: special focus on LD50 values for birds and mammals. Environ Toxicol Chem16:1785-1788.

    Article  CAS  Google Scholar 

  244. Klasmeier J, Matthies M, MacLeod M, Fenner K., Scheringer M, Stroebe M, Le Gall AC, McKone T, Van de Meent D, Wania F. 2006. Application of multimedia models for screening assessment of long-range transport potential and overall persistence. Environ Sci Technol 40:53-60.

    Article  CAS  PubMed  Google Scholar 

  245. EPA. 2006. PBT profiler, Ver 1.203 . September 21, 2006, http://www.pbtprofiler.net/. Developed by the Environmental Science Center under contract to U.S. Environmental Protection Agency.

    Google Scholar 

  246. Commission of the European Communities. 2006. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Off J Eur Union L 396 of 30.12.2006.

    Google Scholar 

  247. Steensberg J. 1989. Environmental health decision making. The politics of disease prevention. Thesis. Supplementum 42 to the Scandinavian Journal of Social Medicine, Almqvist & Wiksell International, Copenhagen, Denmark.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Traas, T., Leeuwen, C.V. (2007). Ecotoxicological Effects. In: Leeuwen, C.v., Vermeire, T. (eds) Risk Assessment of Chemicals. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6102-8_7

Download citation

Publish with us

Policies and ethics