Advertisement

Predicting Toxicological and Ecotoxicological Endpoints

  • A.P. Worth
  • T.I. Netzeva
  • G. Patlewicz

In the last few decades, society has become increasingly concerned about the possible impacts of chemicals to which humans and environmental organisms are exposed. In many industrialised countries, this has led to the implementation of stringent chemicals legislation and to the initiation of ambitious risk assessment and management programmes (see Chapter 1). However, it has become increasingly apparent that the magnitude of the task exceeds the availability of resources (experts, time, money) if traditional test methods are employed. This realization, coupled with increasing attention to animal welfare concerns, has prompted the development and application of various (computer-based) estimation methods in the regulatory assessment of chemicals.

Keywords

Lower Unoccupied Molecular Orbital Maximum Tolerate Dose Applicability Domain Structure Activity Relationship Local Lymph Node Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Livingstone DJ. 2004. Building QSAR models: a practical guide. In Predicting Chemical Toxicity and Fate. Cronin MTD, Livingstone DJ, eds. CRC Press, Boca Raton, FL, USA. pp. 151-170.Google Scholar
  2. 2.
    Cronin MTD, Schultz TW. 2003. Pitfalls in QSAR. Journal of Molecular Structure (Theochem) 622:39-51.Google Scholar
  3. 3.
    Kubinyi, H. 1993. QSAR: Hansch analysis and related approaches. VCH, Weinheim, Germany.Google Scholar
  4. 4.
    Livingstone DJ. 1995. Data Analysis for Chemists: applications to QSAR and chemical product design. Oxford University Press, Oxford, England.Google Scholar
  5. 5.
    Kier LB, Hall LH. 1986. Molecular connectiviy in structure-activity analysis. Res. Studio Press Ltd, Letchworth, UK.Google Scholar
  6. 6.
    Dearden JC. 1990. Physicochemical properties. In Practical Applications of Quantitative structure-activity relationships (QSAR) in Environmental Chemistry and Toxicology. Karcher W, Devillers J, eds. Kluwer, Dordrecht, The Netherlands, pp. 25-59.Google Scholar
  7. 7.
    Netzeva TI. 2004. Whole molecule and atom based topological descriptors. In: Cronin MTD, Livingstone DJ, eds., Predicting Chemical Toxicity and Fate. Taylor and Francis, London, pp. 61-83.Google Scholar
  8. 8.
    Todeschini R, Consonni V. 2000. Handbook of Molecular Descriptors. Wiley-VCH, Weinheim, Germany.Google Scholar
  9. 9.
    Hansch C, Maloney PP, Fujitya T, Muir RM. 1962. Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194:178-180.Google Scholar
  10. 10.
    Hansch C, Fukita T. 1964. Rho-sigma-pi analysis. A method for the correlation of biological activity with chemical structure. J American Chemical Society 86:1616-1626.Google Scholar
  11. 11.
    Leo A, Hansch C, Church C. 1969. Comparison of parameters currently used in the study of structureactivity relationships. J Med Chem 12:766-771.PubMedGoogle Scholar
  12. 12.
    McFarland JW. 1970. On the parabolic relationship between drug potency and hydrophobicity. J Med Chem 13:1192-1196.PubMedGoogle Scholar
  13. 13.
    Commission of the European Communities. 2003. Proposal for a Regulation of the European Parliament and of the Council concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency and amending Directive 1999/45/EC and Regulation (EC) on Persistent Organic Pollutants Proposal for a Directive of the European Parliament and of the Council amending Council Directive 67/548/EEC in order to adapt it to Regulation (EC) of the European Parliament and of the Council concerning the registration, evaluation, authorisation and restriction of chemicals. Brussels, 29 October 2003, Brussels, BelgiumGoogle Scholar
  14. 14.
    Commission of the European Communities. 2006. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Off J Eur Union, L 396/1 of 30.12.2006.Google Scholar
  15. 15.
    Jaworska JS, Comber M, Auer C, van Leeuwen CJ. 2003. Summary of a workshop on regulatory acceptance of (Q)SARs for human health and environmental endpoints. Environ Health Perspect 111:1358-1360.CrossRefPubMedGoogle Scholar
  16. 16.
    Eriksson L, Jaworska JS, Worth AP, Cronin MTD, McDowell RM, Gramatica P. 2003. Methods for reliability, uncertainty assessment, and applicability evaluations of classification and regression based QSARs. Environ Health Perspect 111:1361-1375.CrossRefPubMedGoogle Scholar
  17. 17.
    Cronin MTD, Walker JD, Jaworska JS, Comber MHI, Watts CD, Worth AP. 2003. Use of quantitative structureactivity relationships in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances. Environ Health Perspect 111:1376-1390.CrossRefPubMedGoogle Scholar
  18. 18.
    Cronin MTD, Jaworska JS, Walker JD, Comber MHI, Watts CD, Worth AP. 2003. Use of quantitative structureactivity relationships in international decision-making frameworks to predict health effects of chemical substances. Environ Health Perspect 111:1391-1401.CrossRefPubMedGoogle Scholar
  19. 19.
    Organization for Economic Cooperation and Development. 2004. The Report from the Expert Group on (Quantitative) Structure-Activity Relationships 456 Predicting toxicological and ecotoxicological endpoints [(Q)SARs] on the Principles for the Validation of (Q)SARs. ENV/JM/TG(2004)27/REV. OECD, Paris, France, 17pp.Google Scholar
  20. 20.
    Worth AP, Bassan A, Gallegos A, Netzeva TI, Patlewicz G, Pavan M, Tsakovska I, Vracko M. 2005. The Characterisation of (Quantitative) Structure-Activity Relationships: Preliminary Guidance. JRC report EUR 21866 EN. European Chemicals Bureau, Ispra, Italy. Accesible from: http://ecb.jrc.it.Google Scholar
  21. 21.
    Netzeva TI, Worth AP, Aldenberg T, Benigni R, Cronin MTD, Gramatica P, Jaworska JS, Kahn S, Klopman G, Marchant CA, Myatt G, Nikolova-Jeliazkova N, Patlewicz GY, Perkins R, Roberts DW, Schultz TW, Stanton DT, van de Sandt JJM, Tong W, Veith G., Yang C. 2005. Current Status of Methods for Defining the Applicability Domain of (Quantitative) Structure-Activity Relationships. The Report and Recommendations of ECVAM Workshop 52. Altern Lab Anim 33:155-173.PubMedGoogle Scholar
  22. 22.
    Jaworska J, Nikolova-Jeliazkova N, Aldenberg T. 2005. QSAR applicability domain estimation by projection of the training set in descriptor space: a review. Altern Lab Anim 33:445-459.PubMedGoogle Scholar
  23. 23.
    Nikolova-Jeliazkova N, Jaworska J. 2005. An approach to determining applicability domains for QSAR group contribution models: an analysis of SRC KOWWIN. Altern Lab Anim 33:461-70.PubMedGoogle Scholar
  24. 24.
    Dimitrov S, Dimitrova G, Pavlov T, Dimitrova N, Patlewicz G, Niemela J, Mekenyan O. 2005. A stepwise approach for defining the applicability domain of SAR and QSAR models. J Chem Inf Model 45:839-849.PubMedGoogle Scholar
  25. 25.
    Draper NR, Smith H. 1991. Applied Regression Analysis. John Wiley and Sons, New York, USA.Google Scholar
  26. 26.
    Worth AP, Cronin MTD. 2003. The use of discriminant analysis, logistic regression and classification tree analysis in the development of classification models for human health effects. J Mol Struct (Theochem) 622:97- 111.Google Scholar
  27. 27.
    Cronin MTD, Dearden JC, Duffy JC, Edwards R, Manga N, Worth AP, Worgan ADP. 2002. The importance of hydrophobicity and electrophilicity descriptors in mechanistically-based QSARs for toxicological endpoints. SAR QSAR Environ Res 13:167-176.PubMedGoogle Scholar
  28. 28.
    Cronin MTD, Livingstone DJ. 2004. Predicting Chemical Toxicity and Fate. CRC Press, Boca Raton, FL, USA. 472 pp.Google Scholar
  29. 29.
    Patlewicz G, Rodford R, Walker JD. 2003. Quantitative Structure-Activity Relationships for Predicting Skin and Eye Irritation. Environ Toxicol Chem 22:1862-1869.PubMedGoogle Scholar
  30. 30.
    Gallegos Saliner A., Patlewicz G, Worth AP. 2006. Review of literature-based models for skin and eye irritation and corrosion. JRC report EUR 22320 EN. European Chemicals Bureau, Ispra, Italy. Accesible from: http://ecb.jrc.it.Google Scholar
  31. 31.
    Lessigiarska I, Worth AP, Netzeva TI. 2005. Comparative Review of QSARs for Acute Toxicity. JRC report EUR 21559 EN. European Chemicals Bureau, Ispra, Italy. Accesible from: http://ecb.jrc.it.Google Scholar
  32. 32.
    Tsakovska I, Lessigiarska I, Netzeva T, Worth AP. 2006. Review of QSARs for mammalian toxicity. JRC report EUR 22846 EN. European Chemicals Bureau, Ispra, Italy. Accesible from: http://ecb.jrc.it.Google Scholar
  33. 33.
    Draize JH, Woodard G, Calvery HO. 1944. Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes. J Pharmacol Exp Therapeutics 82:377-390.Google Scholar
  34. 34.
    Organization for Economic Cooperation and Development. 2001. OECD Attachment to the Test Guideline 404: A Sequential Testing Strategy for Skin Irritation and Corrosion. OECD, Paris, France.Google Scholar
  35. 35.
    Worth AP, Cronin MTD. 2001. The use of pH measurements to predict the potential of chemicals to cause acute dermal and ocular toxicity. Toxicology 169: 119-131.PubMedGoogle Scholar
  36. 36.
    Worth AP. 2004. The tiered approach to toxicity assessment based on the integrated use of alternative (non-animal) tests. In: Cronin MTD, Livingstone DJ, eds., Predicting Chemical Toxicity and Fate. CRC Press, Boca Raton, FL, USA, pp. 389-410.Google Scholar
  37. 37.
    Barratt MD. 1996. Quantitative structure-activity relationships for skin corrosivity of organic acids, bases and phenols: principal components and neural network analysis of extended sets. Toxicol in Vitro 10:85-94.PubMedGoogle Scholar
  38. 38.
    Barratt MD. 1996. Quantitative structure-activity relationships for skin irritation and corrosivity of neutral and electrophilic organic chemicals. Toxicol in Vitro 10:247-256.PubMedGoogle Scholar
  39. 39.
    Smith JS, Macina OT, Sussman NB, Luster MI, Karol MH. 2000. A robust structure-activity relationship (SAR) model for esters that cause skin irritation in humans. Toxicol Sci 55:215-222.PubMedGoogle Scholar
  40. 40.
    Smith JS, Macina OT, Sussman NB, Karol MH, Maibach HI. 2000. Experimental validation of a structure-activity relationship model of skin irritation by esters. QSAR 19:467–474.Google Scholar
  41. 41.
    Hayashi M, Nakamura Y, Higashi K, Kato H, Kishida F, Kaneko H. 1999. A quantitative structure-activity relationship study of the skin irritation potential of phenols. Toxicol in Vitro 13:915-922.PubMedGoogle Scholar
  42. 42.
    Kodithala K, Hopfinger AJ, Thompson ED, Robinson MK. 2002. Prediction of skin irritation from organic chemicals using membrane-interaction QSAR analysis. Toxicol Sci 66: 336-346.PubMedGoogle Scholar
  43. 43.
    Enslein K, Borgstedt HH, Blake BW, Hart JB. 1987. Prediction of rabbit skin irritation severity by structure activity relationships. In Vitro Toxicology 1:129-147.Google Scholar
  44. 44.
    Gerner I, Zinke S, Graetschel G, Schlede E. 2000. Development of a decision support system for the introduction of alternative methods into local irritation/ corrosivity testing strategies. Creation of fundamental rules for a decision support system. Altern Lab Anim 28:665-698.PubMedGoogle Scholar
  45. 45.
    Gerner I, Graetschel G, Kahl J, Schlede E. 2000. Development of a decision support system for the introduction of alternative methods into local irritation/ corrosivity testing strategies. Development of a relational database. Altern Lab Anim 28:11-28.Google Scholar
  46. 46.
    Rorije E, Hulzebos E. 2005. Evaluation of (Q)SARs for the prediction of skin irritation/corrosion potential. Physicochemical exclusion rules. Final report for ECB contract IHCP.B430206. European Chemicals Bureau, Joint Research Centre, Ispra, Italy. Accesible from: http:// ecb.jrc.it.Google Scholar
  47. 47.
    Enslein K, Blake BW, Tuzzeo TM, Borgstedt HH, Hart JB, Salem H. 1988. Estimation of rabbit eye irritation scores by structure activity equations. In vitro Toxicology 2:1-14.Google Scholar
  48. 48.
    Rosenkranz HS, Zhang YP, Klopman G. 1998. The development and characterisation of a structure-activity relationship model of the Draize eye irritation test. Altern Lab Anim 26:779-809.Google Scholar
  49. 49.
    Tsakovska I, Netzeva T, Worth AP. 2005. Evaluation of (Q)SARs for the prediction of eye irritation/corrosion potential - physicochemical exclusion rules. JRC Report EUR 21897 EN, 42 pp. European Chemicals Bureau, Ispra, Italy. Accesible from: http://ecb.jrc.it.Google Scholar
  50. 50.
    Barratt MD. 1997. QSARs for the eye irritation potential of neutral organic chemicals. Toxicol in Vitro 11:1-8.PubMedGoogle Scholar
  51. 51.
    Cronin MTD, Basketter DA, York M. 1994. A quantitative structure-activity relationship (QSAR) investigation of a Draize eye irritation database. Toxicol in Vitro 8: 21-28.PubMedGoogle Scholar
  52. 52.
    Sugai S, Murata K, Kitagaki T, Tomita I. 1991. Studies on eye irritation caused by chemicals in rabbits—II. Structure-activity relationships and in vitro approach to primary eye irritation of salicylates in rabbits. J Toxicol Sci 16:111-130.PubMedGoogle Scholar
  53. 53.
    Abraham MH, Kumarsingh R, Cometto-Muñiz JE, Cain WS. 1998. A Quantitative structure-activity relationship (QSAR) for a Draize eye irritation database. Toxicol in Vitro 12:201-207.PubMedGoogle Scholar
  54. 54.
    Patlewicz GY, Rodford RA, Ellis G, Barratt MD. 2000. A QSAR model for the eye irritation of cationic surfactants. Toxicol in Vitro 14:79-84.PubMedGoogle Scholar
  55. 55.
    Worth AP, Cronin MTD. 2000. Embedded cluster modelling: a novel quantitative structure-activity relationhip for generating elliptic models of biological activity. In: Balls M, van Zeller A-M, Halder ME, eds., Progress in the Reduction, Refinement and Replacement of Animal Experimentation. Elsevier Science, Amsterdam, The Netherlands, pp. 479-491.Google Scholar
  56. 56.
    Cronin MTD. 1996. The use of cluster significance analysis to identify asymmetric QSAR datasets in toxicology. An example with eye irritation data. SAR QSAR Env Res 5:167-175.Google Scholar
  57. 57.
    Kulkarni A, Hopfinger AJ, Osborne R, Bruner LH, Thompson ED. 2001. Prediction of eye irritation from organic chemicals using membrane-interaction QSAR analysis. Toxicol Sci 59:335-345.PubMedGoogle Scholar
  58. 58.
    Ekwall B. 1983. Screening of toxic compounds in mammalian cell cultures. Ann N Y Acad Sci 407:64-77.PubMedGoogle Scholar
  59. 59.
    Ekwall B, Clemedson C, Crafoord B, Ekwall B, Hallander S, Walum E, Bondesson I. 1998. MEIC evaluation of acute systemic toxicity. Part V. Rodent and human toxicity data for the 50 reference chemicals. Altern Lab Anim 26 Suppl. 2:571-616.Google Scholar
  60. 60.
    Ekwall B. et al. 1998. MEIC evaluation of acute systemic toxicity. Part VI. The prediction of human toxicity by rodent LD50 values and results from 61 in vitro methods. Altern Lab Anim 26 Suppl. 2:617-658.Google Scholar
  61. 61.
    Lessigiarska I, Worth AP, Netzeva TI, Dearden JC, Cronin MTD. 2006. Quantitative structure-activityactivity and quantitative structure-activity investigations of human and rodent toxicity. Chemosphere 65:1878- 1887.PubMedGoogle Scholar
  62. 62.
    Organization for Economic Cooperation and Development. 1992. Guidelines for Testing of Chemicals No. 406. Skin sensitisation. OECD, Paris, France.Google Scholar
  63. 63.
    Organization for Economic Cooperation and Development. 2002. Guidelines for Testing of Chemicals No. 429. Skin sensitisation: the local lymph node assay. OECD, Paris, France.Google Scholar
  64. 64.
    Basketter DA, Pease Smith CK, Patlewicz GY. 2003. Contact allergy: the local lymph node assay for the prediction of hazard and risk. Clin Exp Dermatol 18:218- 221.Google Scholar
  65. 65.
    Gerberick GF, Ryan CA, Kimber I, Dearman RJ, Lea LJ, Basketter DA. 2000. Local lymph node assay: validation assessment for regulatory purposes. American J Contact Dermatitis 11:3-18.Google Scholar
  66. 66.
    Dupuis G, Benezra C. 1982. Allergic contact dermatitis to simple chemicals: a molecular approach. Marcel Dekker Inc, New York & Basel.Google Scholar
  67. 67.
    Aptula AO, Patlewicz G, Roberts DW. 2005. Skin sensitisation: reaction mechanistic applicability domains for structure-activity relationships. Chem Res Toxicol 458 Predicting toxicological and ecotoxicological endpoints 18:1420-1426.Google Scholar
  68. 68.
    Roberts, DW, Williams DL. 1982. The derivation of quantitative correlations between skin sensitisation and physicochemical parameters for alkylating agents and their application to experimental data for sultones. J Theor Biol 99:807-825PubMedGoogle Scholar
  69. 69.
    Roberts, DW, Basketter DA. 2000. Quantitative structureactivity relationships: sulfonate esters in the local lymph node assay. Contact Dermatitis 42:154-61.PubMedGoogle Scholar
  70. 70.
    Basketter DA, Roberts DW, Cronin M Scholes EW. 1992. The value of the local lymph node assay in quantitative structure-activity investigations. Contact Dermatitis 27:137-142PubMedGoogle Scholar
  71. 71.
    Roberts DW. 1987. Structure-activity relationships for skin sensitisation potential of diacrylates and dimethacrylates. Contact Dermatitis 17:281-289.PubMedGoogle Scholar
  72. 72.
    Patlewicz G, Basketter DA, Smith CK, Hotchkiss SA, Roberts DW. 2001. Skin-sensitisation structure-activity relationships for aldehydes. Contact Dermatitis 44:331- 336.PubMedGoogle Scholar
  73. 73.
    Patlewicz G, Wright ZM, Basketter DA, Pease CK, Lepoittevin J-P, Arnau EG. 2002. Structure-activity relationships for selected fragrance allergens. Contact Dermatitis 47:219-226.PubMedGoogle Scholar
  74. 74.
    Patlewicz G, Basketter DA, Pease CK, Wilson K, Wright ZM, Roberts DW, Bernard G, Gimenez Arnau E, Lepoittevin J-P. 2004. Further evaluation of quantitative structure-activity relationship models for the prediction of the skin sensitisation potency of selected fragrance allergens. Contact Dermatitis 50:91-97.PubMedGoogle Scholar
  75. 75.
    Roberts DW, York M, Basketter DA. 1999. Structureactivity relationships in the murine local lymph node assay for skin sensitisation: alpha, beta-diketones. Contact Dermatitis 41:14-7.PubMedGoogle Scholar
  76. 76.
    Roberts DW, Patlewicz G. 2002. Mechanism based structure-activity relationships for skin sensitisation – the carbonyl group domain. SAR QSAR Env Res 13:145-152.Google Scholar
  77. 77.
    Patlewicz G, Roberts DW, Walker JD. 2003. QSARs for the skin sensitisation potential of aldehydes and related compounds. QSAR Comb Sci 22:196-203.Google Scholar
  78. 78.
    Roberts DW, Aptula AO, Cronin MT, Hulzebos E, Patlewicz G. 2007. Global (Q)SARs for Skin Sensitisation – assessment against OECD principles. SAR QSAR Env Res 18:343-365.Google Scholar
  79. 79.
    Miller MD, Yourtee DM, Glaros AG, Chappelow CC, Eick JD, Holder AJ. 2005. Quantum mechanical structure-activity relationship analyses for skin sensitisation. J Chem Inf Model 45:924-929.PubMedGoogle Scholar
  80. 80.
    Fedorowicz A, Zheng L, Singh H, Demchuk E. 2004. Structure-activity models for contact sensitisation. Int J Mol Sci 5:56-66.Google Scholar
  81. 81.
    Estrada E, Patlewicz G, Chamberlain M, Basketter D, Larbey S. 2003. Computer-aided knowledge generation for understanding skin sensitisation mechanisms: The TOPS-MODE approach. Chem Res Toxicol 16:1226- 1235.PubMedGoogle Scholar
  82. 82.
    Enslein K, Gombar VK, Blake BW, Maibach HI, Hostynek JJ, Sigman CC, Bagheri D. 1997. A quantitative structure-toxicity relationships model for the dermal sensitisation guinea pig maximization assay. Food Chem Toxicol 35:1091-1098.PubMedGoogle Scholar
  83. 83.
    Barratt MD, Basketter DA, Chamberlain M, Admans GD, Langowski JJ. 1994. An expert system rulebase for identifying contact allergens. Toxicol in Vitro 8:1053- 1060.PubMedGoogle Scholar
  84. 84.
    Barratt MD, Langowski JJ. 1999. Validation and subsequent development of the Derek skin sensitisation rulebase by analysis of the BgVV list of contact allergens. J Chem Inf Comput Sci. 39:294-298.PubMedGoogle Scholar
  85. 85.
    Barratt MD, Castell JV, Miranda MA, Langowski JJ. 2000. Development of an expert system rulebase for the prospective identification of photoallergens. J Photochem Photobiol B. 58:54-61.PubMedGoogle Scholar
  86. 86.
    Mumtaz MM, Knauf LA, Reisman DJ, Peirano WB, DeRosa CT, Gombar VK, Enslein K, Carter JR, Blake BW, Huque KI, Ramanujam VMS. 1995. Assessment of effect levels of chemicals from quantitative structureactivity relationship (QSAR) models. I. Chronic lowestobserved- adverse-effect level (LOAEL). Toxicol Lett 79:131-143.PubMedGoogle Scholar
  87. 87.
    Venkatapathy R, Moudgal CJ, Bruce RM. 2004. Assessment of the oral rat chronic lowest observed adverse effect level model in TOPKAT, a QSAR software package for toxicity prediction. J Chem Inf Comput Sci 44:1623-1629.PubMedGoogle Scholar
  88. 88.
    Tennant RW, Ashby J. (1991). Classification according to chemical structure, mutagenicity to Salmonella and level of carcinogenicity of a further 39 chemicals tested for carcinogenicity by the U.S. National Toxicology program. Mutation Research, 257, 209-227.Google Scholar
  89. 89.
    Woo YT, Lai D, McLain JL, Manibusan MK, Dellarco V. 2002. Use of mechanism-based structure-activity relationships analysis in carcinogenic potential ranking for drinking water disinfection by-products. Environ Health Perspect 110 Suppl 1:75-87.Google Scholar
  90. 90.
    Tennant RW, Spalding J, Stasiewicz S, Ashby J. 1990. Prediction of the outcome of rodent carcinogenicity bioassays currently being conducted on 44 chemicals by the National Toxicology Program. Mutagenesis 5:3-14.PubMedGoogle Scholar
  91. 91.
    Benigni R. 1997. The first U.S. National Toxicology Program exercise on the prediction of rodent carcinogenicity: definitive results. Mutat Res 387:35-45. References 459PubMedGoogle Scholar
  92. 92.
    Richard AM. 1994. International commission for protection against environmental mutagens and carcinogens. Application of SAR methods to noncongeneric data bases associated with carcinogenicity and mutagenicity: issues and approaches. Mutat Res 305:73-97.PubMedGoogle Scholar
  93. 93.
    Benigni R. 2004. Chemical structure of mutagens and carcinogens and the relationship with biological activity. J Exp Clin Cancer Res 23:421-424.Google Scholar
  94. 94.
    Livingstone DJ, Greenwood R, Rees R, Smith MD. 2002. Modelling mutagenicity using properties calculated by computational chemistry. SAR QSAR Env Res 13:21-33.Google Scholar
  95. 95.
    Contrera JF, Matthews EJ, Kruhlak NL, Benz RD. 2005. In silico screening of chemicals for bacterial mutagenicity using electrotopological E-state indices and MDL QSAR software. Regul Toxicol Pharmacol 43:313- 23.PubMedGoogle Scholar
  96. 96.
    Benigni R, ed. 2003. Quantitative Structure-Activity Relationship (QSAR) Models for Mutagens and Carcinogens. CRC Press, Boca Raton, FL, USA.Google Scholar
  97. 97.
    Debnath AK, Debnath G, Shusterman AJ, Hansch C. 1992. A QSAR investigation of the role of hydrophobicity in regulating mutagenicity in the Ames test: 1. Mutagenicity of aromatic and heteroaromatic amines in Salmonella typhimurium TA98 and TA100. Environ Mol Mutagen} 19:37-52.Google Scholar
  98. 98.
    Benigni R. 2005. Structure-activity relationship studies of chemical mutagens and carcinogens: mechanistic investigations and prediction approaches. Chem Rev 105:1767-1800.PubMedGoogle Scholar
  99. 99.
    Polloth C, Mangelsdorf I. 1997. Commentary on the application of (Q)SAR to the toxicological evaluation of existing chemicals. Chemosphere 35:2525-2542.PubMedGoogle Scholar
  100. 100.
    Pearl GM, Livingston-Carr S, Durham SK. 2001. Integration of computational analysis as a sentinel tool in toxicological assessments. Curr Top Med Chem 1:247- 255.PubMedGoogle Scholar
  101. 101.
    Mizutani MY, Tomioka N, Itai A. 1994. Rational automatic search method for stable docking models of protein and ligand. J Mol Biol 243:310-326.PubMedGoogle Scholar
  102. 102.
    Tong W, Perkins R, Xing LI, Welsh WJ, Sheehan DM. 1997. QSAR models for binding of estrogenic compounds to estrogen receptor 〈 gnd ägubtypes. Endocrinology 138:4022-4025.PubMedGoogle Scholar
  103. 103.
    Yu SJ, Keenan SM, Tong W, Welsh WJ. 2002. Influence of the structural diversity of data sets on the statistical quality of three-dimensional quantitative structureactivity relationships (3D-QSAR) models: predicting the estrogenic activity of xenestrogens. Chem Res Toxicol 15:1229-1234.PubMedGoogle Scholar
  104. 104.
    Tong W, Lowis DR, Perkins R, Chen Y, Welsh WJ, Goddette DW, Heritage TW, Sheehan DM. 1998. Evaluation of quantitative structure-activity relationship methods for large scale prediction of chemicals binding to the estrogen receptor. J Chem Inf Comput Sci 38:669- 677.PubMedGoogle Scholar
  105. 105.
    Schmieder PK, Aptula AO, Routledge EJ, Sumpter JP, Mekenyan OG. 2000. Estrogenicity of alkylphenolic compounds: A 3-D structure-activity evaluation of gene activation. Environ Toxicol Chem 19:1727-1740.Google Scholar
  106. 106.
    Serafimova R, Walker J, Mekenyan O. 2002. Androgen receptor binding affinity of pesticide ‘‘active’’ formulation ingredients. QSAR evaluation by COREPA method. SAR QSAR Env Res 13:127-134.Google Scholar
  107. 107.
    Gallegos Saliner A, Amat L, Carbò-Dorca R, Schultz TW, Cronin MTD. 2003. Molecular quantum similarity analysis of estrogenic activity. J Chem Inf Comput Sci 43:1166-1176.PubMedGoogle Scholar
  108. 108.
    Tong W, Xie Q, Hong H, Shi L, Fang H, Perkins R. 2004. Assessment of prediction confidence and domain extrapolation of two structure-activity relationship models for predicting estrogen receptor binding affinity. Environ Health Perspect 112:1249-1254.PubMedGoogle Scholar
  109. 109.
    Tong W, Fang H, Hong H, Xie Q, Perkins R, Sheehan DM. 2004. In: Cronin, MTD and Livingstone, DJ, eds, Predicting Chemical Toxicity and Fate. CRC Press, Boca Raton, FL, USA, pp. 285-314.Google Scholar
  110. 110.
    Netzeva TI, Gallegos Saliner A, Worth AP. 2006. Comparison of the applicability domain of a Quantitative Structure-Activity Relationship for estrogenicity with a large chemical inventory. Environ Toxicol Chem 25:1223- 1230.PubMedGoogle Scholar
  111. 111.
    Saliner AG, Netzeva TI, Worth AP. 2006. Prediction of estrogenicity: validation of a classification model. SAR QSAR Env Res 17:195-223.Google Scholar
  112. 112.
    Duffy JC. 2004. Prediction of pharmacokinetic parameters in drug design and toxicology. In: Cronin MTD, Livingstone DJ, eds., Predicting Chemical Toxicity and Fate. CRC Press, Boca Raton, FL, USA. pp. 229- 261.Google Scholar
  113. 113.
    Taskinen J. 2000. Prediction of aqueous solubility in drug design. Current Opinion Drug Discovery 3:102-107.Google Scholar
  114. 114.
    Ruelle P, Kesselring UW. 1998. The hydrophobic effect. 2. Relative importance of the hydrophobic effect on the solubility of hydrophobes and pharmaceuticals in H bonded solvents. J Pharm Sci. 87:998-1014.PubMedGoogle Scholar
  115. 115.
    Abraham MH, Le J. 1999. The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship. J Pharm Sci. 88:868-880.PubMedGoogle Scholar
  116. 116.
    Huuskonen J, Rantanen J, Livingstone D. 2000. Prediction of aqueous solubility for a diverse set of organic compounds based on atom type electrotopological 460 Predicting toxicological and ecotoxicological endpoints state indices. Eur J Med Chem. 35:1081-1088.PubMedGoogle Scholar
  117. 117.
    Huuskonen J. 2000. Estimation of aqueous solubility for a diverse set of organic compounds based on molecular topology. J Chem Inf Comput Sci. 40:773-777.PubMedGoogle Scholar
  118. 118.
    Kuhne R, Ebert R-U, Kleint F, Schmidt G, Schuurmann G. 1996. Group contribution methods to estimate water solubility of organic chemicals. Chemosphere 33:2129- 2144.Google Scholar
  119. 119.
    Jain N, Yalkowsky SHJ. 2001. Estimation of the aqueous solubility I: application to organic nonelectrolytes. Pharm. Sci. 90:234-252.Google Scholar
  120. 120.
    Liu R, So S-S. 2001. Development of quantitativeproperty relationship models for early ADME evaluation in drug discovery. 1. Aqueous solubility. J Chem Inf Comput Sci 41:1633-1639.PubMedGoogle Scholar
  121. 121.
    Klopman G, Wang S, Balthasar DM. 1992. Estimation of aqueous solubility of organic molecules by the group contribution approach. Application to the study of biodegradation. J Chem Inf Comput Sci 32:474-482.PubMedGoogle Scholar
  122. 122.
    Klopman G, Zhu HJ. 2001. Estimation of the aqueous solubility of organic molecules by the group contribution approach. J Chem Inf Comput Sci 41:439-445.PubMedGoogle Scholar
  123. 123.
    Hansch C, Leo AJ. 1979. Substituent constants for Correlation Analysis in Chemistry and Biology, Wiley, New York, USA.Google Scholar
  124. 124.
    Meylan WM, Howard PH. 1995. Atom/fragment contribution method for estimating octanol-water partition coefficients. J Pharm Sci. 84:83-92.PubMedGoogle Scholar
  125. 125.
    Devillers J, Domine D, Karcher W. 1996. Prediction of n-octanol-water partition coefficients with AUTOLOGP. Abstracts of Papers of the American Chemical Society 212:83.Google Scholar
  126. 126.
    Devillers J, Domine D, Guillon C, Karcher W. 2000. Simulating lipophilicity of organic molecules with a back-propagation neural network. J Pharm Sci. 87:1086– 1090.Google Scholar
  127. 127.
    Moriguchi I, Hirono S, Liu Q, Nakagome I, Matsushita Y. 1992. Simple method of calculating octanol/water partition coefficient. Chem Pharm Bull. 40:127-130.Google Scholar
  128. 128.
    Broto P, Moreau G, Vandycke C. 1984. Molecularstructures - Perception, auto-correlation descriptor and SAR studies - System of atomic contributions for the calculation of the normal-octanol water partitioncoefficients. Eur J Med Chem. 19:71-78.Google Scholar
  129. 129.
    Rekker RF, Terlaak AM, Mannhold R. 1993. On the reliability of calculated log P-values - Rekker, Hansch/ Leo and Suzuki approach. QSAR 12:152-157.Google Scholar
  130. 130.
    Barry BW. 1983. Dermatological Formulations: Percutaneous Absorption. Drugs and the Pharmaceutical Sciences. Vol 18. Marcel Dekker, New York, USA.Google Scholar
  131. 131.
    Smith CK, Hotchkiss SAM. 2001. Allergic Contact Dermatitis. Taylor and Francis, London, UK.Google Scholar
  132. 132.
    Howes D, Guy R, Hadgraft J, Heylings J, Hoeck U, Kemper F, Maibach H, Marty J-P, Merk H, Parra J, Rekkas D, Rondelli I, Schaefer H, Teuber U, Verbiese N. 1996. Methods for assessing percutaneous absorption. Altern Lab Anim 24:81-106.Google Scholar
  133. 133.
    Flynn GL. 1990. Physicochemical determinants of skin absorption. In: Gerrity TR, Henry CJ, eds., Principles of route-to-route extrapolation for risk assessment. Elsevier, New York, USA. pp 93-127.Google Scholar
  134. 134.
    Potts RO, Guy R. 1992. Predicting skin permeability. Pharm Res 9:663-669.PubMedGoogle Scholar
  135. 135.
    Moss GP, Dearden JC, Patel H, Cronin MTD. 2002. Quantitative structure-permeability relationships (QSPRs) for percutaneous absorption. Toxicol in Vitro 16:299-317.PubMedGoogle Scholar
  136. 136.
    Walker JD, Rodford R, Patlewicz G. 2003: Quantitative structure-activity relationships for predicting percutaneous absorption rates. Environ Toxicol Chem 22:1870-1884.PubMedGoogle Scholar
  137. 137.
    Geinoz S, Guy RH, Testa B, Carrupt PA. 2004. Quantitative structure-permeation relationships (QSPeRs) to predict skin permeation: a critical evaluation. Pharm Res 21:83-92.PubMedGoogle Scholar
  138. 138.
    Jones AD, Dick, IP Cherrie, JW Cronin, MTD, Van De Sandt JJM, Esdaile DJ, Iyengar S, ten Berge W, Wilkinson SC, Roper CS, Semple S, de Heer C, Williams FM. 2004. CEFIC Workshop on methods to determine dermal permeation for human risk assessment. Institute of Occupational Medicine, Research Report TM/04/07, December 2004.Google Scholar
  139. 139.
    Lewis DVF. 2001. COMPACT: a structural approach to the modelling of cytochromes P450 and their interactions with xenobiotics. J Chem Technol Biotechnol. 76:237- 244.Google Scholar
  140. 140.
    Klopman G, Dimayuga M, Talafous J. 1994. META 1. A program for the evaluation of metabolic transformation of chemicals. J Chem Inf Comput Sci 34:1320-1325.PubMedGoogle Scholar
  141. 141.
    Talafous J, Sayre LM, Mieyal JJ, Klopman G. 1994. META 2. A dictionary model of mammalian xenobiotic metabolism. J Chem Inf Comput Sci 34:1326-1333.PubMedGoogle Scholar
  142. 142.
    Klopman G, Tu MH. 1999. META - a program for the prediction of products of mammalian metabolism of xenobiotics. In: Erhardt PW, ed., Drug Metabolism, Databases in High Throughput Testing during Drug Design and Development. Blackwell, Oxford, UK. pp. 271-276.Google Scholar
  143. 143.
    Darvas F. 1987. MetabolExpert, an expert system for predicting metabolism of substances. In: Kaiser K, ed., QSAR in Environmental Toxicology. Riedel, Dordrecht, The Netherlands. pp 71-81. References 461Google Scholar
  144. 144.
    Testa B, Jenner P. 1976. Drug Metabolism: Chemical and Biochemical Aspects. Marcel Dekker, New York, USA.Google Scholar
  145. 145.
    Pfeifer S, Borchert H. 1963. Biotransformation von Arzneimittelm. VEB, Berlin, Germany.Google Scholar
  146. 146.
    Greene N, Judson P, Langowski J, Marchant CA. 1999. Knowledge based expert systems for toxicity and metabolism prediction: DEREK, StAR and METEOR. SAR QSAR Env Res 10:299-313.Google Scholar
  147. 147.
    Mekenyan OG, Dimitrov S, Schmieder P, Veith G. 2004. A systematic approach to simulating metabolism in computational toxicology. I. The TIMES heuristic modelling framework. Curr Pharm Des 10:1273-1293.PubMedGoogle Scholar
  148. 148.
    Hawkins DR. 1996. Biotransformations. Volumes 1-7, Royal Society of Chemistry, Cambridge, UK.Google Scholar
  149. 149.
    Verhaar HJM, Mulder W, Hermens JLM. 1995. QSARs for ecotoxicity. In: Hermens, J.L.M. ed., Overview of structure-activity relationships for environmental endpoints, Part 1: General outline and procedure. Report prepared within the framework of the project ‘‘QSAR for Prediction of Fate and Effects of Chemicals in the Environment’’, an international project of the Environmental; Technologies RTD Programme (DGXII/ D-1) of the European Commission under contract number EV5V-CT92-0211.Google Scholar
  150. 150.
    Schultz TW, Cronin MTD. 2003. Essential and desirable characteristics of ecotoxicity QSARs. Environ Toxicol Chem 22:599–607.PubMedGoogle Scholar
  151. 151.
    Russom CL, Bradbury SP, Broderius SJ, Hammermeister DE, Drummond RA. 1997. Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas). Environ Toxicol Chem 16:948–967.Google Scholar
  152. 152.
    Cronin MTD. 2004. Toxicological information for use in predictive modelling: quality, sources, and databases In: Helma C, ed., Predictive Toxicology. Marcel Dekker Inc., New York, USA. pp. 93-133.Google Scholar
  153. 153.
    Seward JR, Sinks GD, Schultz TW. 2001. Reproducibility of toxicity across mode of toxic action the Tetrahymena population growth impairment assay. Aquat Toxicol 53:33-47.Google Scholar
  154. 154.
    Schultz TW, Netzeva TI, Cronin MTD. 2004. Evaluation of QSARs for ecotoxicity: a method for assigning quality and confidence. SAR QSAR Env Res 15:385-397.Google Scholar
  155. 155.
    Escher BI, Hermens JLM. 2002. Modes of toxic action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects. Environ Sci Technol 36:4201-4217.PubMedGoogle Scholar
  156. 156.
    Bradbury SP, Russom CL, Ankley GT, Schultz TW, Walker JD. 2003. Overview of data and conceptual approaches for derivation of quantitative structureactivity relationships for ecotoxicological effects of organic chemicals. Environ Toxicol Chem 22:1789-1798.PubMedGoogle Scholar
  157. 157.
    Schultz TW, Cronin MTD, Walker JD, Aptula AO. 2003a. Quantitative structure–activity relationships (QSARs) in toxicology: a historical perspective. J Mol Struct (Theochem) 622:1-22.Google Scholar
  158. 158.
    Schultz TW, Cronin MTD, Netzeva TI. 2003b. The present status of QSAR in toxicology. J Mol Struct (Theochem) 622:23-38.Google Scholar
  159. 159.
    McKim JM, Bradbury SP, Niemi GJ. 1987. Fish acute toxicity syndromes and their use in the QSAR approach to hazard assessment. Environ Health Perspect. 71:171- 186.PubMedGoogle Scholar
  160. 160.
    Bradbury SP, Henry TR, Carlson RW. 1990. Fish acute toxicity syndromes in the development of mechanismspecific QSARs. In: Karcher W and Devillers J, eds., Practical applications of Quantitative Structure-Activity Relationships (QSAR) in Environmental Chemistry and Toxicology. Kluwer, Dordrecht, The Netherlands, pp. 295-315.Google Scholar
  161. 161.
    Verhaar HJM, Van Leeuwen CJ, Hermens JLM. 1992. Classifying environmental pollutants. 1: Structureactivity relationships for prediction of aquatic toxicity. Chemosphere 25:471-491.Google Scholar
  162. 162.
    Russom CL, Bradbury SP, Broderius SJ, Hammermeister DE, Drummond RA. 1997. Predicting modes of action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas). Environ Toxicol Chem 16:948-967.Google Scholar
  163. 163.
    Nendza M, Müller M. 2000. Discriminating toxicant classes by mode of action: 2. Physicochemical descriptors. Quant. Struct.-Act. Relat. 19:581-598.Google Scholar
  164. 164.
    Verhaar HJM, Solbe J, Speksnijder J, Van Leeuwen CJ, Hermens JLM. 2000. Classifying Environmental pollutants. 3: External validation of the classification system. Chemosphere 40:875-883.PubMedGoogle Scholar
  165. 165.
    De Wolf W, Siebel-Sauer A, Lecloux A, Koch V, Holt M, Feijtel T, Comber M, Boeije G. 2005. Mode of action and aquatic exposure thresholds of no concern. Environ Toxicol Chem 24:479-485.PubMedGoogle Scholar
  166. 166.
    Pavan M, Worth AP, Netzeva TI. 2005. Preliminary analysis of an aquatic toxicity dataset and assessment of QSAR models for narcosis. JRC Report No. 21749 EN. European Chemicals Bureau, Ispra, Italy. Accesible from: http://ecb.jrc.it.Google Scholar
  167. 167.
    Pavan M, Worth AP, Netzeva TI. 2005. Comparative Assessment of QSAR Models for Aquatic Toxicity. JRC Report No EUR 21750 EN. European Chemicals Bureau, Ispra, Italy. Accesible from: http://ecb.jrc.it.Google Scholar
  168. 168.
    Veith GD, Call DJ, Brooke LT. 1983. Structure-toxicity relationships for the fathead minnow, Pimephales promelas: narcotic industrial chemicals. Can J Fish 462 Predicting toxicological and ecotoxicological endpoints Aquat Sci 40:743-748.CrossRefGoogle Scholar
  169. 169.
    European Commission. 2003. Technical guidance documents on risk assessment in support of Commission Directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No. 1488/94 on risk assessment for existing substances, and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. JRC report EUR 20418 EN. European Chemicals Bureau, Ispra, Italy. Accesible from: http://ecb.jrc.it.Google Scholar
  170. 170.
    Hansch C, Kim D, Leo AJ, Novellino E, Silipo C, Vittoria A. 1989. Toward a quantitative comparative toxicology of organic compounds. Crit Rev Toxicol 19:85-226.Google Scholar
  171. 171.
    Lessigiarska I, Worth AP, Sokull-Klüttgen B, Dearden JC, Netzeva TI, Cronin MTD. 2004. QSAR investigation of a large data set for fish, algae and Daphnia toxicity. SAR QSAR Env Res 15:413-431.Google Scholar
  172. 172.
    Pavan M, Netzeva TI, Worth AP. 2006. Validation and applicability domain of a QSAR model for acute toxicity. SAR QSAR Env Res 17:147-171.Google Scholar
  173. 173.
    Roberts DW, Costello JF. 2003. Mechanisms of action for general and polar narcosis: a difference in dimensions. QSAR Comb Sci 22:226-233.Google Scholar
  174. 174.
    Di Marzo W, Galassi S, Todeschini R, Consolaro F. 2001. Traditional versus WHIM descriptors in QSAR approaches applied to fish toxicity studies. Chemosphere 44:401-406.Google Scholar
  175. 175.
    Kaufman RD. 1977. Biophysical mechanisms of anesthetic action: historical perspectives and review of current theories. Anesthesiology 46:49-62.PubMedGoogle Scholar
  176. 176.
    Bradbury SP, Henry TR, Niemi GJ, Carlson RW, Snarski VM. 1989. Use of respiratory-cardiovascular responses of rainbow trout (Oncorhynchus mykiss) in identifying acute toxicity syndromes in fish. Part 3: Polar narcotics.} Environ Toxicol Chem 8:247-261.Google Scholar
  177. 177.
    Vaes WHJ, Urrestarazu Ramos E, Verhaar HJM, Hermens JLM. 1998. Acute toxicity of nonpolar versus polar narcosis: is there a difference? Environ Toxicol Chem 17:1380-1384.Google Scholar
  178. 178.
    Newsome LD, Johnson DE, Nabholz JV. 1993. Validation and upgrade of a QSAR study of the toxicity of amines to freshwater fish. ASTM Special Technical Publication, STP 1179 (Environmental Toxicology and Risk Assessment), 413-426.Google Scholar
  179. 179.
    Jaworska JS, Hunter RS, Schultz TW. 1998. Quantitative structure-toxicity relationships and volume fraction analyses for selected esters. Arch Environ Contam Toxicol 29:86-93.Google Scholar
  180. 180.
    Veith GD, Mekenyan OG. 1993. A QSAR approach for estimating the aquatic toxicity of soft electrophiles. Quant. Struct.-Act. Relat. 12:349-356.Google Scholar
  181. 181.
    Dimitrov SD, Mekenyan OG, Sinks GD, Schultz TW. 2003. Global modelling of narcotic chemicals: ciliate and fish toxicity. Journal of Molecular Structure (Theochem) 622:63-70.Google Scholar
  182. 182.
    Deneer JW, Seinen W, Hermens, JLM. 1988. The acute toxicity of aldehydes to the guppy. Aquatic Toxicol 12:185-192.Google Scholar
  183. 183.
    Deneer JW, Sinnige TL, Seinen W, Hermens JLM. 1988. A quantitative structure-activity relationship for the acute toxicity of some epoxy compounds to the guppy. Aquat Toxicol 13:195-204.Google Scholar
  184. 184.
    Schultz TW, Hewitt M, Netzeva TI, Cronin MTD. 2007. Assessing applicability domains of toxicological QSARs: definition, confidence in predicted values, and the role of mechanisms of action. QSAR Comb. Chem 26: in press.Google Scholar
  185. 185.
    Mekenyan O, Pavlov T, Grancharov V, Todorov M, Schmieder P, Veith G. 2005. 2D-3D migration of large chemical inventories with conformational multiplication. Application of the genetic algorithm. J Chem Inf Model 45:283-92.PubMedGoogle Scholar
  186. 186.
    Netzeva TI, Aptula AO, Benfenati E, Cronin MTD, Gini G, Lessigiarska I, Maran U, Vracko M, Schüürmann G. 2005. Description of the electronic structure of organic chemicals using semiempirical and ab initio methods for development of toxicological QSARs. J Chem Inf Model 45:106-114.Google Scholar
  187. 187.
    Schultz TW, Cronin MTD, Netzeva TI, Aptula AO. 2002. Structure-toxicity relationships for aliphatic chemicals evaluated with Tetrahymena pyriformis. Chem Res Toxicol 15:1602-1609.PubMedGoogle Scholar
  188. 188.
    Lipnick RL. 1991. Outliers, their origin and use in the classification of molecular mechanisms of toxicity. In: Hermens JLM and Opperbuizen A, eds., QSAR in Environmental Toxicology - IV. Elsevier, Amsterdam, The Netherlands, pp 131-153.Google Scholar
  189. 189.
    Schüürmann G. 1990. QSAR analysis of the acute fish toxicity of organic phosphorothionates using theoretically derived molecular descriptors. Environ Toxicol Chem 9:417-428.Google Scholar
  190. 190.
    Karabunarliev S, Mekenyan OG, Karcher W, Russom CL, Bradbury SP. 1996. Quantum chemical descriptors for estimating the acute toxicity of electrophiles to the fathead minnow. Quant. Struct.-Act. Relat. 15:302-310.Google Scholar
  191. 191.
    Karabunarliev S, Mekenyan OG, Karcher W, Russom CL, Bradbury SP. 1996. Quantum chemical descriptors for estimating of acute toxicity of substituted benzenes to the guppy (Poecilia reticulata) and fathead minnow (Pimephales promelas). Quant. Struct.-Act. Relat. 15:311-320.Google Scholar
  192. 192.
    Freidig AP, Hermens JLM. 2001. Narcosis and chemical reactivity QSARs for acute toxicity. Quant. Struct.-Act. Relat. 19:547-553.Google Scholar
  193. 193.
    Schultz TW, Netzeva TI, Roberts DW, Cronin MTD. 2005. Structure-toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonylcontaining, 〈 ,ä - unsaturated chemicals. Chem Res Toxicol 18:330-341.PubMedGoogle Scholar
  194. 194.
    Protic M, Sabljic A. 1989, Quantitative structure-activity relationships of acute toxicity of commercial chemicals on fathead minnows: effect of molecular size. Aquat Toxicol 14: 47-64.Google Scholar
  195. 195.
    Kulkarni SA, Raje DV, Chkrabarti T. 2001, Quantitative structure-activity relationships based on functional and structural characteristics of organic compounds. SAR QSAR Env Res 12:565-591.Google Scholar
  196. 196.
    Toropov AA, Benfenati E. 2004. QSAR modelling of aldehyde toxicity by means of optimisation of correlation weights of nearest neighbouring codes. Journal of Molecular Structure (Theochem) 676:165-169.Google Scholar
  197. 197.
    Nendza M, Müller M. 2000. Discriminant toxicant classes by mode of action: 2. Physicochemical descriptors. Quant. Struct.-Act. Relat. 19:581-598.Google Scholar
  198. 198.
    Sippl W, Contreras JM, Parrot I, Rival YM, Wermuth CG. 2001. Structure-based 3D QSAR and design of novel acetylcholinesterase inhibitors. J. Comput. Aided Mol. Des. 15:395-410.PubMedGoogle Scholar
  199. 199.
    Dimitrov S, Koleva Y, Schultz TW, Walker JD, Mekenyan O. 2004. Interspecies quantitative structure-activity relationship model for aldehydes: aquatic toxicity. Environ Toxicol Chem 23:463-70.PubMedGoogle Scholar
  200. 200.
    Huuskonen J. 2003. QSAR modelling with the electrotopological state indices: predicting the toxicity of organic chemicals. Chemosphere 50:949-953.PubMedGoogle Scholar
  201. 201.
    Papa E, Villa F, Gramatica P. 2005. Statistically validated QSARs, based on theoretical descriptors, for modelling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow). J Chem Inf Model. 45:1256- 66.PubMedGoogle Scholar
  202. 202.
    Cronin MTD, Dearden JC, Dobbs AJ. 1991. QSAR studies of comparative toxicity in aquatic organisms. Sci Total Environ 109/110:431-439.Google Scholar
  203. 203.
    Sinks GD, Schultz TW. 2001. Correlation of Tetrahymena and Pimephales toxicity: evaluation of 100 additional compounds. Environ Toxicol Chem 20:917-921.PubMedGoogle Scholar
  204. 204.
    Tremolada P, Finizio A, Villa S, Gaggi C, Vighi M. 2004. Quantitative inter-specific chemical activity relationships of pesticides in the aquatic environment. Aquatic Toxicol 67:87-103.Google Scholar
  205. 205.
    Zhao Y, Wang L, Goa H, Zhang Z. 1993. Quantitative structure-activity relationships. Relationship between toxicity of organic chemicals to fish and to Photobacterium phosphoreum. Chemosphere 26:1971-1979.Google Scholar
  206. 206.
    Dearden JC, Cronin MTD, Dobbs AJ. 1995. Quantitative structure-activity relationships as a tool to assess the comparative toxicity of organic chemicals. Chemosphere 31:2521-2528.PubMedGoogle Scholar
  207. 207.
    Cronin MTD , Netzeva TI, Dearden JC, Edwards R, Worgan ADP. 2004. Assessment and Modeling of the Toxicity of Organic Chemicals to Chlorella vulgaris: Development of a Novel Database. Chem Res Toxicol 17:545-554.Google Scholar
  208. 208.
    Moore DRJ, Breton RL, MacDonald DB. 2003. A comparison of model performance for six quantitative structure-activity relationship packages that predict acute toxicity to fish. Environ Toxicol Chem 22:1799-1809.PubMedGoogle Scholar
  209. 209.
    Dearden JC, Barratt MD, Benigni R, Bristol DW, Coombes RD, Cronin MTD, Judson PN, Payne MP, Richard AM, Tichy M, Worth AP, Yourick JJ. 1997. The development and validation of expert systems for predicting toxicity. Altern Lab Anim 25:223-252.Google Scholar
  210. 210.
    Sanderson DM, Earnshaw CG. 1991. Computer prediction of possible toxic action from chemical structure. The DEREK system. Hum Exp Tox 10:261- 273.Google Scholar
  211. 211.
    Judson PN. 2002. Prediction of toxicity using DEREK for Windows. J Tox Sci 27:278.Google Scholar
  212. 212.
    Enslein K. 1988. An overview of SARs as an alternative to testing in animals for carcinogenicity, mutagenicity, dermal and eye irritation and acute oral toxicity. Toxicol Ind Health 4:479-498.PubMedGoogle Scholar
  213. 213.
    Cramer GM, Ford RA, Hall RL. 1978. Estimation of Toxic Hazard-A Decision Tree Approach. J Cosmet Toxicol 16:255-276.Google Scholar
  214. 214.
    European Centre for Ecotoxicology and Toxicology of Chemicals. 2003. Aquatic Hazard Assessment II Technical Report 91. ECETOC, Brussels, Belgium.Google Scholar
  215. 215.
    Organization of Economic Cooperation and Development. (2006). Report on the Regulatory Uses and Applications in OECD Member Countries of (Quantitative) Structure- Activity Relationship [(Q)SAR] Models in the Assessment of New and Existing Chemicals. OECD, Paris, France.Google Scholar
  216. 216.
    Walker JD. 2003. Applications of QSARs in toxicology: a US government perspective. Journal of Molecular Structure (Theochem) 622:167-184.Google Scholar
  217. 217.
    Tunkel J, Mayo K, Austin C, Hickerson A, Howard P. 2005. Practical considerations on the use of predictive models for regulatory purposes. Environ Sci Technol 39:2188-2199.PubMedGoogle Scholar
  218. 218.
    Van der Zandt PTJ, van Leeuwen CJ. 1992. A proposal for priority setting of existing chemical substances. VROM 92408/b/9-92, 1502/033. Ministry of Housing, Physical Planning and the Environment, The Hague, The 464 Predicting toxicological and ecotoxicological endpoints Netherlands.Google Scholar
  219. 219.
    Hansen BG, van Haelst AG, van Leeuwen K, van der Zandt P. 1999. Priority setting for existing chemicals: European Union risk ranking method. Environ Toxicol Chem 18:772-779.Google Scholar
  220. 220.
    van Haelst AG, Hansen BG. 2000. Priority setting for existing chemicals: automated data selection routine. Environ Toxicol Chem 19:2372-2377.Google Scholar
  221. 221.
    Pavan M. 2003. Total and Partial Ranking Methods in Chemical Sciences. PhD Thesis. University of Milano- Bicocca, Milan, Italy. Accessible from http://www.disat. unimib.it/chm.Google Scholar
  222. 222.
    Danish Environmental Protection Agency. 2006. Advisory list for self-classification of dangerous substances. DK-EPA, Copenhagen, Denmark. http://www.mst.dk/ chemi/01050000.htm.Google Scholar
  223. 223.
    European Commission. 2001. An interim strategy for management of PBT and vPvB substances. Joint Meeting of the Competent Authorities for the Implementation of Council Directive 67/548/EEC (New Substances) and Council Regulation (EEC) 793/93 (Existing Substances). ENV/D/432028/01. NOTIO/36/2001. DG Environment, Brussels.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • A.P. Worth
  • T.I. Netzeva
  • G. Patlewicz

There are no affiliations available

Personalised recommendations