Pseudomonas pp 227-251 | Cite as

Towards a Genome-Wide Mutant Library of Pseudomonas putida Strain KT2440

  • Estrella Duque
  • Antonio J. Molina-Henares
  • Jesús de la Torre
  • María A. Molina-Henares
  • Teresa del Castillo
  • Jennifer Lam
  • Juan L. Ramos

Microbiology is experiencing exciting times thanks to the current explosion of knowledge. About 25 years after Watson and Crick resolved the structure of DNA, Sanger’s and Maxam’s laboratories developed easy ways to determine the nucleotide sequence of a segment of DNA. This in turn led to the development of new technologies that now make it possible not only to decipher the complete genome sequence of an organism, but also to analyze the global patterns of expression of genes based on genomic microarrays or the results of proteomic assays. Nonetheless, although transcriptional arrays and proteomic techniques can identify large numbers of genes expressed under particular conditions, the biological meaning of these correlations is generally unclear without further analysis.


Pseudomonas Putida Glycine Betaine Mutant Library Fusaric Acid Inorganic Nitrogen Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alaminos, M., and Ramos, J.L., 2001, The methionine biosynthetic pathway from homoserine in Pseudomonas putida involves the metW, metX, metZ, metH and metE gene products. Arch. Microbiol., 176:151–154.PubMedGoogle Scholar
  2. 2.
    Andersen, G.L., Beattie, G.A., and Lindow, S.E., 1998, Molecular characterization and sequence of a methionine biosynthetic locus from Pseudomonas syringae. J. Bacteriol., 180:4497–4507.PubMedGoogle Scholar
  3. 3.
    Aranda-Olmedo, I., Tobes, R., Manzanera, M., Ramos, J.L., and Marques, S., 2002, Species-specific repetitive palindromic (REP) sequences in Pseudomonas putida. Nucleic Acids Res., 30:1826–1833.PubMedGoogle Scholar
  4. 4.
    Auerbach, I.D., Sorensen, C., Hansma, H.G., and Holden, P.A., 2000, Physical morphology and surface properties of unsaturated Pseudomonas putida biofilms. J. Bacteriol., 182:3809–3815.PubMedGoogle Scholar
  5. 5.
    Bagdasarian, M., Lurz, R., Rueckert, B., Franklin, F.C.H., Bagdasarian, M.M., Frey, J., and Timmis, K.N., 1981, Specific-purpose plasmid cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene, 16:237–247.PubMedGoogle Scholar
  6. 6.
    Bagdasarian, M., and Timmis, K.N., 1982, Host: vector systems for gene cloning in Pseudomonas. Curr. Top Microbiol. Immunol., 96:47–67.PubMedGoogle Scholar
  7. 7.
    Bailey, J., and Manoil, C., 2002, Genome-wide internal tagging of bacterial exported proteins. Nature Biotechnol., 20:839–841.Google Scholar
  8. 8.
    Bork, P., and Rohde, K., 1991, More von Willebrand factor type A domains? Sequence similarities with malaria thrombospondin-related anonymous protein, dihydropyridine-sensitive calcium channel and inter-alpha-trypsin inhibitor. Biochem. J., 279:908–910.PubMedGoogle Scholar
  9. 9.
    Caballero, A., and Ramos, J.L., 2006, A double mutant of Pseudomonas putida JLR11 deficient in the synthesis of the nitroreductase PnrA and assimilatory nitrite reductase NasB is impaired from growth on TNT. Environ. Microbiol., 8:1305–1310.Google Scholar
  10. 10.
    Caiazza, N.C., and O’Toole, G.A., 2004, SadB is required for the transition from reversible to irreversible attachment during biofilms formation by Pseudomonas aeruginosa PA14. J. Bacteriol., 186:4476–4485.PubMedGoogle Scholar
  11. 11.
    Cánovas, D., Cases, I., and de Lorenzo, V., 2003, Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ. Microbiol., 5:1242–1256.PubMedGoogle Scholar
  12. 12.
    Cao, H., Baldini, R.L., and Rahme, L.G., 2001, Common mechanisms for pathogens of plants and animals. Annu. Rev. Phytopathol., 39:259–84.PubMedGoogle Scholar
  13. 13.
    Chang, W.-S., and Halverson, L.J., 2003, Reduced water availability influences the dynamics, development, and ultrastructural properties of Pseudomonas putida biofilms. J. Bacteriol., 185:6199–6204.PubMedGoogle Scholar
  14. 14.
    Cornelis, P., and Matthijs, S., 2002, Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ. Microbiol., 4:787–798.PubMedGoogle Scholar
  15. 15.
    Cowles, C.E., Nichols, N.N., and Harwood, C.S., 2000, BenR, a XylS homologue, regulates three different pathways of aromatic acid degradation in Pseudomonas putida. J. Bacteriol., 182:6339–6346.PubMedGoogle Scholar
  16. 16.
    Cucarella, C., Solano, C., Valle, J., Amorena, B., Lasa, I., and Penades, J.R., 2001, Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J. Bacteriol., 183:2888–2896.PubMedGoogle Scholar
  17. 17.
    Dagley, S., 1971, Catabolism of aromatic compounds by micro-organisms. Adv. Microb. Physiol., 6:1–46.PubMedGoogle Scholar
  18. 18.
    de Groot, A., Heijnen, I., de Cock, H., Filloux, A., and Tommassen, J., 1994, Characterization of type IV pilus genes in plant growth-promoting Pseudomonas putida WCS358. J. Bacteriol., 176:642–650.PubMedGoogle Scholar
  19. 19.
    de Lorenzo, V., Herrero M., Jakubzik, U., and Timmis K.N., 1990, Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J. Bacteriol., 172:6568–6572.PubMedGoogle Scholar
  20. 20.
    de Lorenzo, V., and Timmis, K.N., 1994, Analysis and construction of stable phenotypes in gram-negative bacteria with Tn5- and Tn10-derived mini-transposons. Meth. Enzymol., 235:386–405.PubMedGoogle Scholar
  21. 21.
    Djordjevic, M.A., Chen, H.C., Natera, S., Van Noorden, G., Menzel, C., Taylor, S., Renard, C., Geiger, O., and Weiller, G.F., 2003, A global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation. Mol. Plant–Microbe Interact., 16:508–524.PubMedGoogle Scholar
  22. 22.
    Domínguez-Cuevas, P., González-Pastor, J.E., Marqués, S., Ramos, J.L., and de Lorenzo, V., 2006, Transcriptional tradeoff between metabolic and stress-response programs in Pseudomonas putida KT2440 cells exposed to toluene. J. Biol. Chem., 281:11981–11991.PubMedGoogle Scholar
  23. 23.
    Dorr, J., Hurek, T., and Reinhold-Hurek, B., 1998, Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol. Microbiol., 30:7–17.PubMedGoogle Scholar
  24. 24.
    Drake, S.L., Sandstedt, S.A., and Koomey, M., 1997, PilP, a pilus biogenesis lipoprotein in Neisseria gonorrhoeae, affects expression of PilQ as a high-molecular-mass multimer. Mol. Microbiol., 23:657–668.PubMedGoogle Scholar
  25. 25.
    Duque, E., Ramos-González, M.I., Delgado, A., Contreras, A., Molin, S., and Ramos, J.L., 1992, Genetically engineered Pseudomonas strains for mineralization of aromatics: survival, performance, gene transfer, and biological containment, pp. 429–437. In Gaily, E., Silver, S., Withold, B. (eds.), Pseudomonas-91. Molecular Biology and Biotechnology, Chapter 46. American Society for Microbiology, Washington DC.Google Scholar
  26. 26.
    Duque, E., Rodríguez-Herva, J.J., de la Torre, J., Domínguez-Cuevas, P., Muñoz-Rojas, J., and Ramos, J.L., 2007. The RpoT regulon of Pseudomonas putida and its role in endurance against solvents. J. Bacteriol., 189:207–219.PubMedGoogle Scholar
  27. 27.
    Erb, R.W., Eichner, C.A., Wagner-Dobler, I., and Timmis, K.N., 1997, Bioprotection of microbial communities from toxic phenol mixtures by a genetically designed pseudomonad. Nature Biotechnol., 15:378–382.Google Scholar
  28. 28.
    Entner, N., and Doudoroff, M., 1952, Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J. Biol. Chem., 196:853–862.PubMedGoogle Scholar
  29. 29.
    Espinosa-Urgel, M., Salido, A., and Ramos, J.L., 2000, Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J. Bacteriol., 182:2363–2369.PubMedGoogle Scholar
  30. 30.
    Federal Register, 1982, Appendix E, Certified host-vector systems. 47:17197.Google Scholar
  31. 31.
    Foglino, M., Borne, F., Bally, M., Ball, G., and Patte, J.C., 1995, A direct sulfhydrylation pathway is used for methionine biosynthesis in Pseudomonas aeruginosa. Microbiology, 141:431–439.PubMedGoogle Scholar
  32. 32.
    Fouts, D.E., Abramovitch, R.B., Alfano, J.R., Baldo, A.M., Buell, C.R., Cartinhour, S., et al., 2002, Genome wide identification of Pseudomonas syringae pv. tomato DC3000 promoters controlled by the HrpL alternative sigma factor. Proc. Natl Acad. Sci. U.S.A., 99:2275–2280.PubMedGoogle Scholar
  33. 33.
    Galán, B., Díaz, E., and García, J.L., 2000, Enhancing desulphurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. Environ. Microbiol., 2:687–694.PubMedGoogle Scholar
  34. 34.
    Godoy, P., Ramos-Gonzalez, M.I., and Ramos, J.L., 2001, Involvement of the TonB system in tolerance to solvents and drugs in Pseudomonas putida DOT-T1E. J. Bacteriol., 183:5285–5292.PubMedGoogle Scholar
  35. 35.
    Hallsworth, J.E., Heim S., and Timmis, K.N., 2003, Chaotropic solutes cause water stress in Pseudomonas putida. Environ. Microbiol., 5:1270–1280.PubMedGoogle Scholar
  36. 36.
    Harder, W., and Quayle, J.R., 1971, Aspects of glycine and serine biosynthesis during growth of Pseudomonas AM1 on C compounds. Biochem. J., 121:763–769.PubMedGoogle Scholar
  37. 37.
    Harwood, C.S., and Parales, R.E., 1996, The b-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol., 50:553–590.PubMedGoogle Scholar
  38. 38.
    Harayama, S., and Timmis, K.N., 1989, Catabolism of aromatic hydrocarbons by Pseudomonas, pp. 151–174. In D.A. Hopwood and K.F. Chater (eds.), Genetics of Bacterial Diversity, Academic Press, London.Google Scholar
  39. 39.
    Heim, S., Ferrer, M., Heuer, H., Regenhardt, D., Nimtz, M., and Timmis, K.N., 2003, Proteome reference map of Pseudomonas putida strain KT2440 for genome expression profiling: distinct responses of KT2440 and Pseudomonas aeruginosa strain PAO1 to iron deprivation and a new form of superoxide dismutase. Environ. Microbiol., 5:1257–1269.PubMedGoogle Scholar
  40. 40.
    Herrero, M., de Lorenzo V., and Timmis K.N., 1990, Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J. Bacteriol., 172:6557–6567.PubMedGoogle Scholar
  41. 41.
    Itoh, Y., Wang, X., Hinnebusch, B.J., Preston III, J.F., and Romeo, T., 2005, Depolymerization of b-1, 6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J. Bacteriol., 187:382–387.PubMedGoogle Scholar
  42. 42.
    Jacobs, M.A., Alwood, A., Thaipisuttikul, I., Spencer, D., Haugen, E., Ernst, S., Will, O., Kaul, R., Raymond, C., Levy, R., Chun-Rong, L., Guenthner, D., Bovee, D., Olson, M.V., and Manoil, C., 2003, Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. U.S.A., 100:14339–14344.PubMedGoogle Scholar
  43. 43.
    Jiménez, J.I., Miñambres, B., García, J.L., and Díaz, E., 2002, Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ. Microbiol., 4:824–841.PubMedGoogle Scholar
  44. 44.
    Kamilova, F., Validov, S., Azarova, T., Mulders, I., and Lugtenberg, B., 2005, Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ. Microbiol., 7:1809–1817.PubMedGoogle Scholar
  45. 45.
    Lehoux, D.E., Sanschagrin, F., and Levesque, R.C., 1999, Defined oligonucleotide tag pools and PCR screening in signature-tagged mutagenesis of essential genes from bacteria. BioTechniques, 26:473–480.PubMedGoogle Scholar
  46. 46.
    Lessie, T.G., and Phibbs, P.V. Jr., 1984, Alternative pathways of carbohydrate utilization in pseudomonads. Annu. Rev. Microbiol., 38:359–388.PubMedGoogle Scholar
  47. 47.
    Llamas, M.A., Ramos, J.L., and Rodríguez-Herva, J.J., 2003, Transcriptional organization of the Pseudomonas putida tol-oprL Genes. J. Bacteriol., 185:184–195.PubMedGoogle Scholar
  48. 48.
    Llamas, M.A., Rodríguez-Herva, J.J., Hancock, R.E.W., Bitter, W., Tommasen, J., and Ramos, J.L., 2003, Role of Pseudomonas putida tol-oprL gene products in uptake of solutes through the cytoplasmic membrane. J. Bacteriol., 185:4707–4716.PubMedGoogle Scholar
  49. 49.
    Lugtenberg, B.J.J., and Dekkers, L.C., 1999, What makes Pseudomonas bacteria rhizosphere competent? Environ. Microbiol., 1:9–13.PubMedGoogle Scholar
  50. 50.
    Lugtenberg, B.J.J., Kravchenko, L.V., and Simon, M., 1999, Tomato seed and root exudates sugars: composition, utilization by Pseudomonas biocontrol strains and role in rhizosphere colonization. Environ. Microbiol., 1:439–446.PubMedGoogle Scholar
  51. 51.
    Ma, J.-F., Hager, P.W., Howell, M.L., Phibbs, P.V., and Hassett, D.J., 1998, Cloning and characterization of the Pseudomonas aeruginosa zwf gene encoding glucose-6-phosphate dehydrogenase, an enzyme important in resistance to methyl viologen (paraquat). J. Bacteriol., 180:1741–1749.PubMedGoogle Scholar
  52. 52.
    Madan Babu, M.M., Teichmann, S.A., and Aravind, L., 2006, Evolutionary dynamics of prokaryotic transcriptional regulatory networks. J. Mol. Biol., 358:614–633.PubMedGoogle Scholar
  53. 53.
    Martin dos Santos, V., Timmis, K., Tümmler, B., and Weinel, C., 2004, Genomic features of Pseudomonas Strain KT2440, pp. 77–112. In J.L. Ramos (ed.), Pseudomonas, Vol. 1. Kluwer Academic/Plenum Publishers, New York.Google Scholar
  54. 54.
    Martínez-Bueno, M.A., Tobes, R., Rey, M., and Ramos, J.L., 2002, Detection of multiple extracytoplasmic function (ECF) sigma factors in the genome of Pseudomonas putida KT2440 and their counterparts in Pseudomonas aeruginosa PA01. Environ. Microbiol., 4:842–855.PubMedGoogle Scholar
  55. 55.
    Martin dos Santos, V.A.P., Heim, S., Moore, E.R.B., Strätz, M., and Timmis, K.N., 2004, Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ. Microbiol., 6:1264–1286.Google Scholar
  56. 56.
    Maxam, A.M., and Gilbert, W., 1977, A new method for sequencing DNA. Proc. Natl Acad. Sci. U.S.A., 74:560–564.PubMedGoogle Scholar
  57. 57.
    McClure, N.C., Fry, J.C., and Weightman, A.J., 1991, Survival and catabolic activity of natural and genetically engineered bacteria in a laboratory-scale activated-sludge unit. Appl. Environ. Microbiol., 57:366–373.PubMedGoogle Scholar
  58. 58.
    McClure, N.C., Weightman, A.J., and Fry, J.C., 1989, Survival of Pseudomonas putida UWC1 containing cloned catabolic genes in a model activated-sludge unit. Appl. Environ. Microbiol., 55:2627–2634.PubMedGoogle Scholar
  59. 59.
    Mermod, N., Lehrbach, P.R., Reineke, W., and Timmis, K.N., 1984, Transcription of the TOL plasmid toluate catabolic pathway operon of Pseudomonas putida is determined by a pair of co-ordinately and positively regulated overlapping promoters. EMBO J., 3:2461–2466.PubMedGoogle Scholar
  60. 60.
    Molina, L., Ramos, C., Ronchel, M.C., Molin, S., and Ramos, J.L., 1998, Construction of an efficient biologically contained Pseudomonas putida strain and its survival in outdoor assays. Appl. Environ. Microbiol., 64:2072–2078.PubMedGoogle Scholar
  61. 61.
    Molina, L., Ramos, C., Duque, E., Ronchel, M.C., García, J.M., Wyke, L., and Ramos, J.L., 2000, Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Biol. Biochem., 32:315–321.Google Scholar
  62. 62.
    Molina, L., Ramos, C., Ronchel, M.C., Molin, S., and Ramos, J.L., 2000, Construction of an efficient biologically contained Pseudomonas putida strain and its survival in outdoor assays. pp. 170–177. In: Biotechnology of soil: Monitoring, conservation and remediation, EC-COST, Brussels.Google Scholar
  63. 63.
    Muñoz-Rojas, J., Bernal, P., Duque, E., Godoy, P., Segura, A., and Ramos, J.L., 2006, Involvement of Cyclopropane fatty acids in the response of Pseudomonas putida KT2440 to freeze-drying. Appl. Environ. Microbiol., 72:472–477.PubMedGoogle Scholar
  64. 64.
    Muramatsu, H., Mihara, H., Kakutani, R., Yasuda, M., Ueda, M., Kurihara, T., and Esaci, N., 2005, The putative malate/lactate dehydrogenase from Pseudomonas putida is an NADPH-dependent ∆1-piperideine-2-carboxylate/∆1-pyrroline-2-carboxylate reductase involved in the catabolism of D-lysine and D-Proline. J. Biol. Chem., 280:5329–5335.PubMedGoogle Scholar
  65. 65.
    Nakazawa, T., 2002, Travels of a Pseudomonas, from Japan around the world. Environ. Microbiol., 4:782–786.PubMedGoogle Scholar
  66. 66.
    Nelson, K.E., Weinel, C., Paulsen, I.T., Dodson, R.J., Hilbert, H., Martin dos Santos, V.A., Fouts, D.E., Gill, S.R., Pop, M., Holmes, M., Brinkac, L., Beanan, M., DeBoy, R.T., Daugherty, S., Kolonay, J., Madupu, R., Nelson, W., White, O., Peterson, J., Khouri, H., Hance, I., Chris Lee, P., Holtzapple, E., Scanlan, D., Tran, K., Moazzez, A., Utterback, T., Rizzo, M., Lee, K., Kosack, D., Moestl, D., Wedler, H., Lauber, J., Stjepandic, D., Hoheisel, J., Straetz, M., Heim, S., Kiewitz, C., Eisen, J.A., Timmis, K.N., Dusterhoft, A., Tummler, B., and Fraser, C.M., 2002, Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol., 4:799–808.PubMedGoogle Scholar
  67. 67.
    Nichols, N.N., and Harwood, C.S., 1997, PcaK, a high-affinity permease for the aromatic compounds 4-hydroxybenzoate and protocatechuate from Pseudomonas putida. J. Bacteriol., 179:5056–5061.PubMedGoogle Scholar
  68. 68.
    Nozaki, M., Kagamiyama, H., and Hayaishi, O., 1963, Metapyrocatechase. I. Purification, crystallization and some properties. Biochem Z., 338:582–590.PubMedGoogle Scholar
  69. 69.
    Nüsslein, K., Maris, D., Timmis, K.N., and Dwyer, D.F., 1992, Expression and transfer of engineered catabolic pathways harbored by Pseudomonas spp. introduced into activated sludge microcosms. Environ. Microbiol., 58:3380–3386.Google Scholar
  70. 70.
    Olivera, E.R., Minambres, B., Garcia, B., Muniz, C., Moreno, M.A., Ferrández, A., Díaz, E., García, J.L., and Luengo, J.M., 1998, Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc. Natl Acad. Sci. U.S.A., 95:6419–6424.PubMedGoogle Scholar
  71. 71.
    Paulsen, I.T., Press, C.M., Ravel, J., Kobayashi, D.Y., Myers, G.S.A., Mavrodi, D.V., DeBoy, R.T., Seshadri, R., Ren, Q., Madupu, R., Dodson, R.J., Durkin, A.S., Brinkac, L.M., Daugherty, S.C., Sullivan, S.A., Rosovitz, M.J., Gwinn, M.L., Zhou, L., Schneider, D.J., Cartinhour, S.W., Nelson, W.C., Weidman, J., Watkins, K., Tran, K., Khouri, H., Pierson, E.A., Pierson III, L.S., Thomashow, L.S., and Loper, J.E., 2005, Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nature Biotechnol., 23:873–878.Google Scholar
  72. 72.
    Phillips, A.T., 1986, Biosynthetic and catabolic features of amino acid metabolism in Pseudomonas. In J.R. Sokatch (ed.), The Bacteria, Vol. X. Academic Press, New York.Google Scholar
  73. 73.
    Pipke, R., Wagner-Döbler, I., Timmis, K.N., and Dwyer, D.F., 1992, Survival and function of a genetically engineered Pseudomonad in aquatic sediment microcosms. Appl. Environ. Microbiol., 58:1259–1265.PubMedGoogle Scholar
  74. 74.
    Ramos, J.L., Díaz, E., Dowling, D., de Lorenzo, V., Molin, S., O’Gara, F., Ramos, C., and Timmis, K.N., 1994, The behavior of bacteria designed for biodegradation. Bio/Technol., 12:1349–1356.Google Scholar
  75. 75.
    Ramos, J.L., Duque, E., Godoy, P., and Segura, A., 1998, Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E. J. Bacteriol., 180:3323–3329.PubMedGoogle Scholar
  76. 76.
    Ramos, J.L., Duque, E., and Ramos-González, M.I., 1991, Survival in soils of an herbicide-resistant Pseudomonas putida bearing a recombinant TOL plasmid. Appl. Environ. Microbiol., 57:260–266.PubMedGoogle Scholar
  77. 77.
    Ramos, J.L., Wasserfallen, A., Rose, K., and Timmis, K.N., 1987, Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. Science, 235:593–596.PubMedGoogle Scholar
  78. 78.
    Ramos-Díaz, M.A., and Ramos, J.L., 1998, Combined physical and genetic map of the Pseudomonas putida KT2440 Chromosome. J. Bacteriol., 180: 6352–6363.PubMedGoogle Scholar
  79. 79.
    Ramos-González, M.I., Campos, M.J., Ramos, J.L., and Espinosa-Urgel, M., 2006, Characterization of the Pseudomonas putida mobile genetic element ISPpu10: an occupant of repetitive extragenic palindromic sequences. J. Bacteriol., 188:37–44.PubMedGoogle Scholar
  80. 80.
    Regenhardt, D., Heuer, H., Heim, S., Fernandez, U.D., Strömpl, C., Moore, E.R.B., and Timmis, K.N., 2002, Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440. Environ. Microbiol., 4:912–915.PubMedGoogle Scholar
  81. 81.
    Reva, O.N., Weinel, C., Weinel, M., Böhm, K., Stjepandic, D., Hoheisel, J.D., and Tümmler, B., 2006, Functional genomics of stress response in Pseudomonas putida KT2440. J. Bacteriol., 188:4079–4092.PubMedGoogle Scholar
  82. 82.
    Revelles, O., Espinosa-Urgel, M., Fuhrer, T., Sauer, U., and Ramos, J.L., 2005, Multiple and interconnected pathways for L-Lysine catabolism in Pseudomonas putida KT2440. J. Bacteriol., 187:7500–7510.PubMedGoogle Scholar
  83. 83.
    Ronchel, M.C., Ramos, C., Jensen, L.B., Molin, S., and Ramos, J.L., 1995, Construction and behavior of biologically contained bacteria for environmental applications in bioremediation. Appl. Environ. Microbiol., 61:2990–2994.PubMedGoogle Scholar
  84. 84.
    Rodríguez-Herva, J.J., Ramos-González, M.I., and Ramos, J.L., 1996, The Pseudomonas putida peptidoglycan-associated outer membrane lipoprotein is involved in maintenance of the integrity of the cell envelope. J. Bacteriol., 178:1699–1706.PubMedGoogle Scholar
  85. 85.
    Sánchez-Romero, J.M., Diaz-Orejas, R., and de Lorenzo, V., 1998, Resistance to tellurite as a selection marker for genetic manipulations of Pseudomonas strains. Appl. Environ. Microbiol., 64:4040–4046.PubMedGoogle Scholar
  86. 86.
    Sanger, F., Nicklen, S., and Coulson, A.R., 1977, DNA Sequencing with chain-terminating inhibitors. Proc. Natl Acad. Sci. U.S.A., 74:5463–5467.PubMedGoogle Scholar
  87. 87.
    Santiago, M.F., and West, T.P., 2002, Control of pyrimidine formation in Pseudomonas putida ATCC 17536. Can. J. Microbiol., 48:1076–1081.PubMedGoogle Scholar
  88. 88.
    Sauer, K., and Camper, A.K., 2001, Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J. Bacteriol., 183:6579–6589.PubMedGoogle Scholar
  89. 89.
    Sawyer, M.H., Baumann, L., Berman, S.M., Canovas, J.L., and Berman, R.H., 1977, Pathways of D-fructose catabolism in species of Pseudomonas. Arch. Microbiol., 112:49–55.PubMedGoogle Scholar
  90. 90.
    Schleissner, C., Reglero, A., and Luengo, J.M., 1997, Catabolism of D-glucose by Pseudomonas putida U occurs via extracellular transformation into D-gluconic acid and induction of a specific gluconate transport system. Microbiology, 143:1595–1603.PubMedGoogle Scholar
  91. 91.
    Schnider-Keel, U., Seematter, A., Maurhofer, M., Blumer, C., Duffy, B., Gigot-Bonnefoy, C., Reimmann, C., Notz, R., Defago, G., Haas, D., and Keel, C., 2000, Autoinduction of 2, 4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J. Bacteriol., 182:1215–1225.PubMedGoogle Scholar
  92. 92.
    Schweizer, H., and de Lorenzo, V., 2004, Molecular tools for genetic analysis of Pseudomonads, pp. 317–350. In J.L. Ramos (ed.), Pseudomonas, Vol. I. Kluwer Academic/ Plenum Publishers, New York.Google Scholar
  93. 93.
    Segura, A., Godoy, P., van Dillewijn, P., Hurtado, A., Arroyo, N., Santacruz, S., and Ramos, J.L., 2005, Proteomic analysis reveals the participation of energy- and stress-related proteins in the response of Pseudomonas putida DOT-T1E to toluene. J. Bacteriol., 187:5937–5945.PubMedGoogle Scholar
  94. 94.
    Stover, C.K., et al., 2000, Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 406:959–964.PubMedGoogle Scholar
  95. 95.
    Swanson, B.L., Hager, P., Phibbs, P. Jr., Ochsner, U., Vasil, M.L., and Hamood, A.N., 2000, Characterization of the 2-ketogluconate utilization operon in Pseudomonas aeruginosa PAO1. Mol. Microbiol., 37:561–573.PubMedGoogle Scholar
  96. 96.
    Timmis, K.N., 2002, Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ. Microbiol., 4:779–781.PubMedGoogle Scholar
  97. 97.
    Velázquez, F., di Bartolo, I., and de Lorenzo, V., 2004, Genetic evidence that catabolites of the Entner-Doudoroff pathway signal C source repression of the sigma-54 Pu promoter of Pseudomonas putida. J. Bacteriol., 186:8267–8275.PubMedGoogle Scholar
  98. 98.
    Vicente, M., and Canovas, J.L., 1973, Glucolysis in Pseudomonas putida: physiological role of alternative routes from the analysis of defective mutants. J. Bacteriol., 116:908–914.PubMedGoogle Scholar
  99. 99.
    Vicente, M., and Canovas, J.L., 1973, Regulation of the glucolytic enzymes in Pseudomonas putida. Arch. Mikrobiol., 93:53–64.PubMedGoogle Scholar
  100. 100.
    Venturi, V., Zennaro, F., Degrassi, G., Okeke, B.C., and Bruschi, C.V., 1998, Genetics of ferulic acid bioconversion to protocatechuic acid in plant-growth-promoting Pseudomonas putida WCS358. Microbiology, 144:965–73.PubMedGoogle Scholar
  101. 101.
    Visca, P., Leoni L., Wilson, M.J., and Lamont, I.L., 2002, Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas. Mol. Microbiol., 45:1177–90.PubMedGoogle Scholar
  102. 102.
    Vodovar, N., Vallenet, D., Cruveiller, S., Rouy, Z., Barbe, V., Acosta, C., Cattolico, L., Jubin, C., Lajus, A., Segurens, B., Vacherie, B., Wincker, P., Weissenbach, J., Lemaitre, B., Medigue, C., and Boccard, F., 2006, Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nature Biotechnol., 24:673–679.Google Scholar
  103. 103.
    Wagner-Döbler, I., Pipke, R., Timmis, K.N., and Dwyer, D.F., 1992, Evaluation of aquatic sediment microcosms and their use in assessing possible effects of introduced microorganisms on ecosystem parameters. Appl. Environ. Microbiol., 58:1249–1258.PubMedGoogle Scholar
  104. 104.
    Watson, J.D., and Crick, F.H.C., 1953, Genetical implications of the structure of deoxyribonucleic acid. Nature, 171:964–967.PubMedGoogle Scholar
  105. 105.
    Weinel, C., Nelson, K.E., and Tummler, B., 2002, Global features of the Pseudomonas putida KT2440 genome sequence. Environ. Microbiol., 4:809–818.PubMedGoogle Scholar
  106. 106.
    Wubbolts, M.G., and Timmis, K.N., 1990, Biotransformation of substituted benzoates to the corresponding cis-diols by an engineered strain of Pseudomonas oleovorans producing the TOL plasmid-specified enzyme toluate-1, 2-dioxygenase. Appl. Environ. Microbiol., 56:569–71.PubMedGoogle Scholar
  107. 107.
    Yuste, L., Hervás, A.B., Canosa, I., Tobes, R., Jiménez, J.I., Nogales, J., Pérez-Pérez, M.M., Santero, E., Díaz, E., Ramos, J.-L., de Lorenzo, V., and Rojo, F., 2006, Growth phase-dependent expression of the Pseudomonas putida KT2440 transcriptional machinery analysed with a genome-wide DNA microarray. Environ. Microbiol., 8:165–177.PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Estrella Duque
    • 1
  • Antonio J. Molina-Henares
    • 1
  • Jesús de la Torre
    • 1
  • María A. Molina-Henares
    • 1
  • Teresa del Castillo
    • 1
  • Jennifer Lam
    • 1
  • Juan L. Ramos
    • 1
  1. 1.Department of Environmental ProtectionEstación Experimental del Zaidín – CSICSpain

Personalised recommendations