Skip to main content

Quorum-Quenching Acylases in Pseudomonas aeruginosa

  • Chapter
Pseudomonas

The β-lactam acylases, mostly found by screening samples from natural sources, represent a unique family of heterodimeric N-terminal nucleophile hydrolases. Interestingly, most of the strains found producing β-lactam acylases are Pseudomonas species. We have shown that these enzymes show high selectivity towards the acid side chain, but are far more promiscuous with regard to the amine moiety of the substrate. It is therefore highly unlikely that the industrially relevant deacylation of β-lactam compounds has evolved specifically in nature. Interestingly, no less than four putative acylases of the N-terminal nucleophile family have been identified in the Pseudomonas aeruginosa PAO1 genome. We have investigated these four putative acylases of which one could be expressed in Escherichia coli. Interestingly, the enzyme was found to catalyse the hydrolysis of acylhomoserine- lactones as reported for Ralstonia acylase suggesting a role in quorum quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rolinson, G.N., Batchelor, F.R., Butterworth, D., Cameron-wood, J., Cole, M., Eustace, G.C., Hart, M.V., Richards, M., and Chain, E.B., 1960, Formation of 6-aminopenicillanic acid from penicillin by enzymatic hydrolysis. Nature, 187:236–237.

    Article  PubMed  CAS  Google Scholar 

  2. Balasingham, K., Warburton, D., Dunnill, P., and Lilly, M.D., 1972, The isolation and kinetics of penicillin amidase from Escherichia coli. Biochim. Biophys. Acta., 276:250–256.

    PubMed  CAS  Google Scholar 

  3. Barbero, J.L., Buesa, J.M., Gonzalez, D.B., Mendez, E., Pez-Aranda, A., and Garcia, J.L., 1986, Complete nucleotide sequence of the penicillin acylase gene from Kluyvera citrophila. Gene, 49:69–80.

    Article  PubMed  CAS  Google Scholar 

  4. Verhaert, R.M.D., Riemens, A.M., vanderLaan, J.M., vanDuin, J., and Quax, W.J., 1997, Molecular cloning and analysis of the gene encoding the thermostable penicillin G acylase from Alcaligenes faecalis. Appl. Environ. Microbiol., 63:3412–3418.

    PubMed  CAS  Google Scholar 

  5. Bruns, W., Hoppe, J., Tsai, H., Bruning, H.J., Maywald, F., Collins, J., and Mayer, H., 1985, Structure of the penicillin acylase gene from Escherichia coli: a periplasmic enzyme that undergoes multiple proteolytic processing. J. Mol. Appl. Genet., 3:36–44.

    PubMed  CAS  Google Scholar 

  6. Schumacher, G., Sizmann, D., Haug, H., Buckel, P., and Bock, A., 1986, Penicillin acylase from E. coli: unique gene-protein relation. Nucleic Acids Res., 14:5713–5727.

    Article  PubMed  CAS  Google Scholar 

  7. Brannigan, J.A., Dodson, G., Duggleby, H.J., Moody, P.C., Smith, J.L., Tomchick, D.R., and Murzin, A.G., 1995, A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature, 378:416–419.

    Article  PubMed  CAS  Google Scholar 

  8. Aramori, I., Fukagawa, M., Tsumura, M., Iwami, M., Ono, H., Kojo, H., Kohsaka, M., Ueda, Y., and Imanaka, H., 1991, Cloning and nucleotide sequencing of a novel 7 beta-(4-carboxybutanamido) cephalosporanic acid acylase gene of Bacillus laterosporus and its expression in Escherichia coli and Bacillus subtilis. J. Bacteriol., 173:7848–7855.

    PubMed  CAS  Google Scholar 

  9. Matsuda, A., Toma, K., and Komatsu, K., 1987, Nucleotide sequences of the genes for two distinct cephalosporin acylases from a Pseudomonas strain. J. Bacteriol., 169:5821–5826.

    PubMed  CAS  Google Scholar 

  10. Matsuda, A., Matsuyama, K., Yamamoto, K., Ichikawa, S., and Komatsu, K., 1987, Cloning and characterization of the genes for two distinct cephalosporin acylases from a Pseudomonas strain. J. Bacteriol., 169:5815–5820.

    PubMed  CAS  Google Scholar 

  11. Li, Y., Jiang, W., Yang, Y., Zhao, G., and Wang, E., 1998, Overproduction and purification of glutaryl 7-amino cephalosporanic acid acylase. Protein Expr. Purif., 12:233–238.

    Article  PubMed  CAS  Google Scholar 

  12. Ishiye, M., and Niwa, M., 1992, Nucleotide sequence and expression in Escherichia coli of the cephalosporin acylase gene of a Pseudomonas strain. Biochim. Biophys. Acta, 1132:233–239.

    PubMed  CAS  Google Scholar 

  13. Sio, C.F., Otten, L.G., Cool, R.H., Diggle, S.P., Braun, P.G., Bos, R., Daykin, M., Camara, M., Williams, P., and Quax, W.J., 2006, Quorum quenching by an N-acyl-homoserine lactone acylase from Pseudomonas aeruginosa PAO1. Infect. Immun., 74:1673–1682.

    Article  PubMed  CAS  Google Scholar 

  14. Sio, C.F., Riemens, A.M., van der Laan, J.M., Verhaert, R.M.D., and Quax, W.J., 2002, Directed evolution of a glutaryl acylase into an adipyl acylase. Eur. J. Biochem., 269:4495–4504.

    Article  PubMed  CAS  Google Scholar 

  15. Huang, J.J., Han, J.I., Zhang, L.H., and Leadbetter, J.R., 2003, Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol., 69:5941–5949.

    Article  PubMed  CAS  Google Scholar 

  16. Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G.K., Wu, Z., Paulsen, I.T., Reizer, J., Saier, M.H., Hancock, R.E., Lory, S., and Olson, M.V., 2000, Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 406:959–964.

    Article  PubMed  CAS  Google Scholar 

  17. Fuqua, C., Parsek, M.R., and Greenberg, E.P., 2001, Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu. Rev. Genet., 35:439–468.

    Article  PubMed  CAS  Google Scholar 

  18. Smith, R.S., and Iglewski, B.H., 2003, Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target. J. Clin. Invest., 112:1460–1465.

    PubMed  CAS  Google Scholar 

  19. Gardiner, S.M., Chhabra, S.R., Harty, C., Williams, P., Pritchard, D.I., Bycroft, B.W., and Bennett, T., 2001, Haemodynamic effects of the bacterial quorum sensing signal molecule, N-(3-oxododecanoyl)-L-homoserine lactone, in conscious, normal and endotoxaemic rats. Br. J. Pharmacol., 133:1047–1054.

    Article  PubMed  CAS  Google Scholar 

  20. Zhang, H.B., Wang, L.H., and Zhang, L.H., 2002, Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. U.S.A., 99:4638–4643.

    Article  PubMed  CAS  Google Scholar 

  21. Carlier, A., Uroz, S., Smadja, B., Fray, R., Latour, X., Dessaux, Y., and Faure, D., 2003, The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-Acyl homoserine lactonase activity. Appl. Environ. Microbiol., 69:4989–4993.

    Article  PubMed  CAS  Google Scholar 

  22. Park, S.Y., Kang, H.O., Jang, H.S., Lee, J.K., Koo, B.T., and Yum, D.Y., 2005, Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl. Environ. Microbiol., 71:2632–2641.

    Article  PubMed  CAS  Google Scholar 

  23. Dong, Y.H., Xu, J.L., Li, X.Z., and Zhang, L.H., 2000, AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. U.S.A., 97:3526–3531.

    Article  PubMed  CAS  Google Scholar 

  24. Reimmann, C., Ginet, N., Michel, L., Keel, C., Michaux, P., Krishnapillai, V., Zala, M., Heurlier, K., Triandafillu, K., Harms, H., Defago, G., and Haas, D., 2002, Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. Microbiology, 148:923–932.

    PubMed  CAS  Google Scholar 

  25. Lin, Y.H., Xu, J.L., Hu, J., Wang, L.H., Ong, S.L., Leadbetter, J.R., and Zhang, L.H., 2003, Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol. Microbiol., 47:849–860.

    Article  PubMed  Google Scholar 

  26. Dong, Y.H., Wang, L.H., Xu, J.L., Zhang, H.B., Zhang, X.F., and Zhang, L.H., 2001, Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature, 411:813–817.

    Article  PubMed  CAS  Google Scholar 

  27. Dong, Y.H., Gusti, A.R., Zhang, Q., Xu, J.L., and Zhang, L.H., 2002, Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl. Environ. Microbiol., 68:1754–1759.

    Article  PubMed  CAS  Google Scholar 

  28. Lee, S.J., Park, S.Y., Lee, J.J., Yum, D.Y., Koo, B.T., and Lee, J.K., 2002, Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl. Environ. Microbiol., 68:3919–3924.

    Article  PubMed  CAS  Google Scholar 

  29. Park, S.Y., Lee, S.J., Oh, T.K., Oh, J.W., Koo, B.T., Yum, D.Y., and Lee, J.K., 2003, AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology, 149:1541–1550.

    Article  PubMed  CAS  Google Scholar 

  30. Rasmussen, T.B., and Givskov, M., 2006, Quorum sensing inhibitors: a bargain of effects. Microbiology, 152:895–904.

    Article  PubMed  CAS  Google Scholar 

  31. Leadbetter, J.R., and Greenberg, E.P., 2000, Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol., 182:6921–6926.

    Article  PubMed  CAS  Google Scholar 

  32. Zakataeva, N.P., Aleshin, V.V., Tokmakova, I.L., Troshin, P.V., and Livshits, V.A., 1999, The novel transmembrane Escherichia coli proteins involved in the amino acid efflux. FEBS Lett., 452:228–232.

    Article  PubMed  CAS  Google Scholar 

  33. Flagan, S., Ching, W.K., and Leadbetter, J.R., 2003, Arthrobacter strain VAI-A utilizes acyl-homoserine lactone inactivation products and stimulates quorum signal biodegradation by Variovorax paradoxus. Appl. Environ. Microbiol., 69:909–916.

    Article  PubMed  CAS  Google Scholar 

  34. Uroz, S., Chhabra, S.R., Camara, M., Williams, P., Oger, P., and Dessaux, Y., 2005, N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology, 151:3313–3322.

    Article  PubMed  CAS  Google Scholar 

  35. Huang, J.J., Petersen, A., Whiteley, M., and Leadbetter, J.R., 2006, Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl. Environ. Microbiol., 72:1190–1197.

    Article  PubMed  CAS  Google Scholar 

  36. Takeshima, H., Inokoshi, J., Takada, Y., Tanaka, H., and Omura, S., 1989, A deacylation enzyme for aculeacin A, a neutral lipopeptide antibiotic, from Actinoplanes utahensis: purification and characterization. J. Biochem. (Tokyo), 105:606–610.

    PubMed  CAS  Google Scholar 

  37. Inokoshi, J., Takeshima, H., Ikeda, H., and Omura, S., 1992, Cloning and sequencing of the aculeacin A acylase-encoding gene from Actinoplanes utahensis and expression in Streptomyces lividans. Gene, 119:29–35.

    Article  PubMed  CAS  Google Scholar 

  38. Lamont, I.L., and Martin, L.W., 2003, Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology, 149:833–842.

    Article  PubMed  CAS  Google Scholar 

  39. Ochsner, U.A., Wilderman, P.J., Vasil, A.I., and Vasil, M.L., 2002, GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol. Microbiol., 45:1277–1287.

    Article  PubMed  CAS  Google Scholar 

  40. Neilands, J.B., 1993, Siderophores. Arch. Biochem. Biophys., 302:1–3.

    Article  PubMed  CAS  Google Scholar 

  41. Neilands, J.B., 1981, Microbial iron compounds. Annu. Rev. Biochem., 50:715–731.

    Article  PubMed  CAS  Google Scholar 

  42. Braun, V., and Killmann, H., 1999, Bacterial solutions to the iron-supply problem. Trends Biochem. Sci., 24:104–109.

    Article  PubMed  CAS  Google Scholar 

  43. Meyer, J.M., Neely, A., Stintzi, A., Georges, C., and Holder, I.A., 1996, Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect. Immun., 64:518–523.

    PubMed  CAS  Google Scholar 

  44. Briskot, G., Taraz, K., and Budzikiewicz, H., 1986, [Pyoverdin-type siderophores from Pseudomonas aeruginosa. Z. Naturforsch. [C], 41:497–506.

    Google Scholar 

  45. Cox, C.D., Rinehart, K.L., Jr., Moore, M.L., and Cook, J.C., Jr., 1981, Pyochelin: novel structure of an iron-chelating growth promoter for Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A., 78:4256–4260.

    Article  PubMed  CAS  Google Scholar 

  46. Cox, C.D., and Adams, P., 1985, Siderophore activity of pyoverdin for Pseudomonas aeruginosa. Infect. Immun., 48:130–138.

    PubMed  CAS  Google Scholar 

  47. Liu, P.V., and Shokrani, F., 1978, Biological activities of pyochelins: iron-chelating agents of Pseudomonas aeruginosa. Infect. Immun., 22:878–890.

    PubMed  CAS  Google Scholar 

  48. Heinrichs, D.E., Young, L., and Poole, K., 1991, Pyochelin-mediated iron transport in Pseudomonas aeruginosa: involvement of a high-molecular-mass outer membrane protein. Infect. Immun., 59:3680–3684.

    PubMed  CAS  Google Scholar 

  49. Meyer, J.M., Hohnadel, D., Khan, A., and Cornelis, P., 1990, Pyoverdin-facilitated iron uptake in Pseudomonas aeruginosa: immunological characterization of the ferripyoverdin receptor. Mol. Microbiol., 4:1401–1405.

    Article  PubMed  CAS  Google Scholar 

  50. Budzikiewicz, H., 1997, Siderophores of fluorescent pseudomonads. Z. Naturforsch. [C], 52:713–720.

    CAS  Google Scholar 

  51. Meyer, J.M., 2000, Pyoverdines: pigments, siderophores and potential taxonomic markers of fluorescent Pseudomonas species. Arch. Microbiol., 174:135–142.

    Article  PubMed  CAS  Google Scholar 

  52. Dorrestein, P.C., Poole, K., and Begley, T.P., 2003, Formation of the chromophore of the pyoverdine siderophores by an oxidative cascade. Org. Lett., 5:2215–2217.

    Article  PubMed  CAS  Google Scholar 

  53. Tsuda, M., Miyazaki, H., and Nakazawa, T., 1995, Genetic and physical mapping of genes involved in pyoverdin production in Pseudomonas aeruginosa PAO. J. Bacteriol., 177:423–431.

    Article  PubMed  CAS  Google Scholar 

  54. Stintzi, A., Cornelis, P., Hohnadel, D., Meyer, J.M., Dean, C., Poole, K., Kourambas, S., and Krishnapillai, V., 1996, Novel pyoverdine biosynthesis gene(s) of Pseudomonas aeruginosa PAO. Microbiology, 142 (Pt 5):1181–1190.

    Article  PubMed  CAS  Google Scholar 

  55. Stintzi, A., Johnson, Z., Stonehouse, M., Ochsner, U., Meyer, J.M., Vasil, M.L., and Poole, K., 1999, The pvc gene cluster of Pseudomonas aeruginosa: role in synthesis of the pyoverdine chromophore and regulation by PtxR and PvdS. J. Bacteriol., 181:4118–4124.

    PubMed  CAS  Google Scholar 

  56. Smith, E.E., Sims, E.H., Spencer, D.H., Kaul, R., and Olson, M.V., 2005, Evidence for diversifying selection at the pyoverdine locus of Pseudomonas aeruginosa. J. Bacteriol., 187:2138–2147.

    Article  PubMed  CAS  Google Scholar 

  57. Hewitt, L., Kasche, V., Lummer, K., Lewis, R.J., Murshudov, G.N., Verma, C.S., Dodson, G.G., and Wilson, K.S., 2000, Structure of a slow processing precursor penicillin acylase from Escherichia coli reveals the linker peptide blocking the active-site cleft. J. Mol. Biol., 302:887–898.

    Article  PubMed  CAS  Google Scholar 

  58. Schuster, M., Lostroh, C.P., Ogi, T., and Greenberg, E.P., 2003, Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J. Bacteriol., 185:2066–2079.

    Article  PubMed  CAS  Google Scholar 

  59. Wagner, V.E., Bushnell, D., Passador, L., Brooks, A.I., and Iglewski, B.H., 2003, Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J. Bacteriol., 185:2080–2095.

    Article  PubMed  CAS  Google Scholar 

  60. Duggleby, H.J., Tolley, S.P., Hill, C.P., Dodson, E.J., Dodson, G., and Moody, P.C., 1995, Penicillin acylase has a single-amino-acid catalytic centre. Nature, 373:264–268.

    Article  PubMed  CAS  Google Scholar 

  61. Sio, C.F., and Quax, W.J., 2004, Improved beta-lactam acylases and their use as industrial biocatalysts. Curr. Opin. Biotech., 15:349–355.

    Article  PubMed  CAS  Google Scholar 

  62. Kim, Y., and Hol, W.G., 2001, Structure of cephalosporin acylase in complex with glutaryl-7-aminocephalosporanic acid and glutarate: insight into the basis of its substrate specificity. Chem. Biol., 8:1253–1264.

    Article  PubMed  CAS  Google Scholar 

  63. Galan, B., Garcia, J.L., and Prieto, M.A., 2004, The PaaX repressor, a link between penicillin G acylase and the phenylacetyl-coenzyme A catabolon of Escherichia coli W. J. Bacteriol., 186:2215–2220.

    Article  PubMed  CAS  Google Scholar 

  64. Hentzer, M., and Givskov, M., 2003, Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J. Clin. Invest., 112:1300–1307.

    PubMed  CAS  Google Scholar 

  65. Pearson, J.P., Feldman, M., Iglewski, B.H., and Prince, A., 2000, Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect. Immun., 68:4331–4334.

    Article  PubMed  CAS  Google Scholar 

  66. Uroz, S., D’Angelo-Picard, C., Carlier, A., Elasri, M., Sicot, C., Petit, A., Oger, P., Faure, D., and Dessaux, Y., 2003, Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria. Microbiology, 149:1981–1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Krzeslak, J., Quax, W.J., Wahjudi, M. (2007). Quorum-Quenching Acylases in Pseudomonas aeruginosa. In: Ramos, JL., Filloux, A. (eds) Pseudomonas. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6097-7_15

Download citation

Publish with us

Policies and ethics