Skip to main content

Modulation of Bacterial Lifestyles via Two-Component Regulatory Networks

  • Chapter
Pseudomonas

The ability of bacteria to survive in specific habitats requires the coordination of the expression of thousands of environmentally regulated genes. The complexity of these regulatory networks increases with the breadth of environments a bacterial species occupies. Species that are able to survive in a broad range of environments generally possess a large coding capacity and devote a significant portion of their genome to signal transduction and gene regulation. Myxococcus xanthus, a free-living bacterium known for its complex multicellular development and differentiation, uses 8% of its genome for regulation. In contrast, the habitat-restricted human pathogen Helicobacter pylori dedicates less than 2% of its genome toward this aim.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anantharaman, V., and Aravind, L., 2003, Application of comparative genomics in the identification and analysis of novel families of membrane-associated receptors in bacteria. BMC Genomics, 4:34.

    PubMed  Google Scholar 

  2. Bagshaw, S.M., and Laupland, K.B., 2006, Epidemiology of intensive care unit-acquired urinary tract infections. Curr. Opin. Infect. Dis., 19:67–71.

    PubMed  Google Scholar 

  3. Barbieri, J.T., and Sun, J., 2004, Pseudomonas aeruginosa ExoS and ExoT. Rev. Physiol. Biochem. Pharmacol., 152:79–92.

    PubMed  CAS  Google Scholar 

  4. Beier, D., and Gross, R., 2006, Regulation of bacterial virulence by two-component systems. Curr. Opin. Microbiol., 9:143–152.

    PubMed  CAS  Google Scholar 

  5. Bleves, S., Soscia, C., Nogueira-Orlandi, P., Lazdunski, A., and Filloux, A., 2005, Quorum sensing negatively controls type III secretion regulon expression in Pseudomonas aeruginosa PAO1. J. Bacteriol., 187:3898–3902.

    PubMed  CAS  Google Scholar 

  6. Bronner, S., Monteil, H., and Prevost, G., 2004, Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiol. Rev., 28:183–200.

    PubMed  CAS  Google Scholar 

  7. Burrowes, E., Abbas, A., O’Neill, A., Adams, C., and O’Gara, F., 2005, Characterisation of the regulatory RNA RsmB from Pseudomonas aeruginosa PAO1. Res. Microbiol., 156:7–16.

    PubMed  CAS  Google Scholar 

  8. Burrowes, E., Baysse, C., Adams, C., and O’Gara, F., 2006, Influence of the regulatory protein RsmA on cellular functions in Pseudomonas aeruginosa PAO1, as revealed by transcriptome analysis. Microbiology, 152:405–418.

    PubMed  CAS  Google Scholar 

  9. Calera, J.A., and Calderone, R., 1999, Histidine kinase, two-component signal transduction proteins of Candida albicans and the pathogenesis of candidosis. Mycoses, 42(Suppl 2):49–53.

    PubMed  CAS  Google Scholar 

  10. Camilli, A., and Bassler, B.L., 2006, Bacterial small-molecule signaling pathways. Science, 311:1113–1116.

    PubMed  CAS  Google Scholar 

  11. Castelli, M.E., Garcia Vescovi, E., and Soncini, F.C., 2000, The phosphatase activity is the target for Mg2 + regulation of the sensor protein PhoQ in Salmonella. J. Biol. Chem., 275:22948–22954.

    PubMed  CAS  Google Scholar 

  12. Chambers, D., Scott, F., Bangur, R., Davies, R., Lim, A., Walters, S., Smith, G., Pitt, T., Stableforth, D., and Honeybourne, D., 2005, Factors associated with infection by Pseudomonas aeruginosa in adult cystic fibrosis. Eur. Respir. J., 26:651–656.

    PubMed  CAS  Google Scholar 

  13. Cho, K., and Zusman, D.R., 1999, Sporulation timing in Myxococcus xanthus is controlled by the espAB locus. Mol. Microbiol., 34:714–725.

    PubMed  CAS  Google Scholar 

  14. Cotter, P.A., and Jones, A.M., 2003, Phosphorelay control of virulence gene expression in Bordetella. Trends Microbiol., 11:367–373.

    PubMed  CAS  Google Scholar 

  15. D’Argenio, D.A., Calfee, M.W., Rainey, P.B., and Pesci, E.C., 2002, Autolysis and autoaggregation in Pseudomonas aeruginosa colony morphology mutants. J. Bacteriol., 184:6481–6489.

    PubMed  Google Scholar 

  16. D’Souza, M., Glass, E.M., Syed, M.H., Zhang, Y., Rodriguez, A., Maltsev, N., and Galperin, M.Y., 2006, Sentra: a database of signal transduction proteins for comparative genome analysis. Nucleic Acids Res., 35(Database issue):D271–273.

    Google Scholar 

  17. Dacheux, D., Attree, I., and Toussaint, B., 2001, Expression of ExsA in trans confers type III secretion system-dependent cytotoxicity on noncytotoxic Pseudomonas aeruginosa cystic fibrosis isolates. Infect. Immun., 69:538–542.

    PubMed  CAS  Google Scholar 

  18. Djordjevic, S., and Stock, A.M., 1998, Structural analysis of bacterial chemotaxis proteins: components of a dynamic signaling system. J. Struct. Biol., 124:189–200.

    PubMed  CAS  Google Scholar 

  19. Drenkard, E., 2003, Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect., 5:1213–1219.

    PubMed  CAS  Google Scholar 

  20. Drenkard, E., and Ausubel, F.M., 2002, Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature, 416:740–743.

    PubMed  CAS  Google Scholar 

  21. Dutta, R., and Inouye, M., 1996, Reverse phosphotransfer from OmpR to EnvZ in a kinase-/phosphatase + mutant of EnvZ (EnvZ.N347D), a bifunctional signal transducer of Escherichia coli. J. Biol. Chem., 271:1424–1429.

    PubMed  CAS  Google Scholar 

  22. Filloux, A., and Ventre, I., 2006, [Two sensors to control bacterial life style: the choice between chronic or acute infection]. Med. Sci. (Paris), 22:811–814.

    Google Scholar 

  23. Fleiszig, S.M., and Evans, D.J., 2002, The pathogenesis of bacterial keratitis: studies with Pseudomonas aeruginosa. Clin. Exp. Optom., 85:271–278.

    PubMed  Google Scholar 

  24. Friedman, L., and Kolter, R., 2004, Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol. Microbiol., 51:675–690.

    PubMed  CAS  Google Scholar 

  25. Friedman, L., and Kolter, R., 2004, Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. J. Bacteriol., 186:4457–4465.

    PubMed  CAS  Google Scholar 

  26. Furukawa, S., Kuchma, S.L., and O’Toole, G.A., 2006, Keeping their options open: acute versus persistent infections. J. Bacteriol., 188:1211–1217.

    PubMed  CAS  Google Scholar 

  27. Ghosh, P., 2004, Process of protein transport by the type III secretion system. Microbiol. Mol. Biol. Rev., 68:771–795.

    PubMed  CAS  Google Scholar 

  28. Gibson, R.L., Burns, J.L., and Ramsey, B.W., 2003, Pathophysiology and management of pulmonary infections in cystic fibrosis. Am. J. Respir. Crit. Care Med., 168:918–951.

    PubMed  Google Scholar 

  29. Goodman, A.L., Kulasekara, B., Rietsch, A., Boyd, D., Smith, R.S., and Lory, S., 2004, A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Dev. Cell, 7:745–754.

    PubMed  CAS  Google Scholar 

  30. Gottesman, S., 2005, Micros for microbes: non-coding regulatory RNAs in bacteria. Trends Genet., 21:399–404.

    PubMed  CAS  Google Scholar 

  31. Ha, U.H., Kim, J., Badrane, H., Jia, J., Baker, H.V., Wu, D., and Jin, S., 2004, An in vivo inducible gene of Pseudomonas aeruginosa encodes an anti-ExsA to suppress the type III secretion system. Mol. Microbiol., 54:307–320.

    PubMed  CAS  Google Scholar 

  32. Hagen, K.D., and Meeks, J.C., 1999, Biochemical and genetic evidence for participation of DevR in a phosphorelay signal transduction pathway essential for heterocyst maturation in Nostoc punctiforme ATCC 29133. J. Bacteriol., 181:4430–4434.

    PubMed  CAS  Google Scholar 

  33. Hauser, A.R., Cobb, E., Bodi, M., Mariscal, D., Valles, J., Engel, J.N., and Rello, J., 2002, Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Crit. Care Med., 30:521–528.

    PubMed  CAS  Google Scholar 

  34. Hecht, G.B., and Newton, A., 1995, Identification of a novel response regulator required for the swarmer-to-stalked-cell transition in Caulobacter crescentus. J. Bacteriol., 177:6223–6229.

    PubMed  CAS  Google Scholar 

  35. Heeb, S., Blumer, C., and Haas, D., 2002, Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J. Bacteriol., 184:1046–1056.

    PubMed  CAS  Google Scholar 

  36. Heurlier, K., Williams, F., Heeb, S., Dormond, C., Pessi, G., Singer, D., Camara, M., Williams, P., and Haas, D., 2004, Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J. Bacteriol., 186:2936–2945.

    PubMed  CAS  Google Scholar 

  37. Hoffman, L.R., D’Argenio, D.A., MacCoss, M.J., Zhang, Z., Jones, R.A., and Miller, S.I., 2005, Aminoglycoside antibiotics induce bacterial biofilm formation. Nature, 436:1171–1175.

    PubMed  CAS  Google Scholar 

  38. Hoiby, N., Krogh Johansen, H., Moser, C., Song, Z., Ciofu, O., and Kharazmi, A., 2001, Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect., 3:23–35.

    PubMed  CAS  Google Scholar 

  39. Hsing, W., and Silhavy, T.J., 1997, Function of conserved histidine-243 in phosphatase activity of EnvZ, the sensor for porin osmoregulation in Escherichia coli. J. Bacteriol., 179:3729–3735.

    PubMed  CAS  Google Scholar 

  40. Jain, M., Ramirez, D., Seshadri, R., Cullina, J.F., Powers, C.A., Schulert, G.S., Bar-Meir, M., Sullivan, C.L., McColley, S.A., and Hauser, A.R., 2004, Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis. J. Clin. Microbiol., 42:5229–5237.

    PubMed  Google Scholar 

  41. Jin, S., Ishimoto, K.S., and Lory, S., 1994, PilR, a transcriptional regulator of piliation in Pseudomonas aeruginosa, binds to a cis-acting sequence upstream of the pilin gene promoter. Mol. Microbiol., 14:1049–1057.

    PubMed  CAS  Google Scholar 

  42. Kato, J., Nakamura, T., Kuroda, A., and Ohtake, H., 1999, Cloning and characterization of chemotaxis genes in Pseudomonas aeruginosa. Biosci. Biotechnol. Biochem., 63:155–161.

    PubMed  CAS  Google Scholar 

  43. Kay, E., Humair, B., Denervaud, V., Riedel, K., Spahr, S., Eberl, L., Valverde, C., and Haas, D., 2006, Two GacA-dependent small RNAs modulate the quorum-sensing response in Pseudomonas aeruginosa. J. Bacteriol., 188:6026–6033.

    PubMed  CAS  Google Scholar 

  44. Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jorgensen, A., Molin, S., and Tolker-Nielsen, T., 2003, Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol. Microbiol., 48:1511–1524.

    PubMed  CAS  Google Scholar 

  45. Kuchma, S.L., Connolly, J.P., and O’Toole, G.A., 2005, A three-component regulatory system regulates biofilm maturation and type III secretion in Pseudomonas aeruginosa. J. Bacteriol., 187:1441–1454.

    PubMed  CAS  Google Scholar 

  46. Kulasakara, H., Lee, V., Brencic, A., Liberati, N., Urbach, J., Miyata, S., Lee, D.G., Neely, A.N., Hyodo, M., Hayakawa, Y., Ausubel, F.M., and Lory, S., 2006, Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3¢-5¢)-cyclic-GMP in virulence. Proc. Natl Acad. Sci. U.S.A., 103:2839–2844.

    PubMed  Google Scholar 

  47. Kulasekara, H.D., Ventre, I., Kulasekara, B.R., Lazdunski, A., Filloux, A., and Lory, S., 2005, A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes. Mol. Microbiol., 55:368–380.

    PubMed  CAS  Google Scholar 

  48. Laskowski, M.A., and Kazmierczak, B.I., 2006, Mutational analysis of RetS, an unusual sensor kinase-response regulator hybrid required for Pseudomonas aeruginosa virulence. Infect. Immun., 74:4462–4473.

    PubMed  CAS  Google Scholar 

  49. Laskowski, M.A., Osborn, E., and Kazmierczak, B.I., 2004, A novel sensor kinase-response regulator hybrid regulates type III secretion and is required for virulence in Pseudomonas aeruginosa. Mol. Microbiol., 54:1090–1103.

    PubMed  CAS  Google Scholar 

  50. Lazdunski, A.M., Ventre, I., and Sturgis, J.N., 2004, Regulatory circuits and communication in Gram-negative bacteria. Nat. Rev. Microbiol., 2:581–592.

    PubMed  CAS  Google Scholar 

  51. Lee, S.Y., Cho, H.S., Pelton, J.G., Yan, D., Henderson, R.K., King, D.S., Huang, L., Kustu, S., Berry, E.A., and Wemmer, D.E., 2001, Crystal structure of an activated response regulator bound to its target. Nat. Struct. Biol., 8:52–56.

    PubMed  CAS  Google Scholar 

  52. Lehoux, D.E., Sanschagrin, F., and Levesque, R.C., 2002, Identification of in vivo essential genes from Pseudomonas aeruginosa by PCR-based signature-tagged mutagenesis. FEMS Microbiol. Lett., 210:73–80.

    PubMed  CAS  Google Scholar 

  53. Lequette, Y., Lee, J.H., Ledgham, F., Lazdunski, A., and Greenberg, E.P., 2006, A distinct QscR regulon in the Pseudomonas aeruginosa quorum-sensing circuit. J. Bacteriol., 188:3365–3370.

    PubMed  CAS  Google Scholar 

  54. Mahenthiralingam, E., Campbell, M.E., and Speert, D.P., 1994, Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect. Immun., 62:596–605.

    PubMed  CAS  Google Scholar 

  55. Matsumoto, K., 2004, Role of bacterial proteases in pseudomonal and serratial keratitis. Biol. Chem., 385:1007–1016.

    PubMed  CAS  Google Scholar 

  56. Mougous, J.D., Cuff, M.E., Raunser, S., Shen, A., Zhou, M., Gifford, C.A., Goodman, A.L., Joachimiak, G., Ordonez, C.L., Lory, S., Walz, T., Joachimiak, A., and Mekalanos, J.J., 2006, A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science, 312:1526–1530.

    PubMed  CAS  Google Scholar 

  57. Mulcahy, H., O’Callaghan, J., O’Grady, E.P., Adams, C., and O’Gara, F., 2006, The posttranscriptional regulator RsmA plays a role in the interaction between Pseudomonas aeruginosa and human airway epithelial cells by positively regulating the type III secretion system. Infect. Immun., 74:3012–3015.

    PubMed  CAS  Google Scholar 

  58. Novick, R.P., 2003, Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol. Microbiol., 48:1429–1449.

    PubMed  CAS  Google Scholar 

  59. O’Carroll, M.R., Syrmis, M.W., Wainwright, C.E., Greer, R.M., Mitchell, P., Coulter, C., Sloots, T.P., Nissen, M.D., and Bell, S.C., 2004, Clonal strains of Pseudomonas aeruginosa in paediatric and adult cystic fibrosis units. Eur. Respir. J., 24:101–106.

    PubMed  Google Scholar 

  60. O’Toole, G., Kaplan, H.B., and Kolter, R., 2000, Biofilm formation as microbial development. Annu. Rev. Microbiol., 54:49–79.

    PubMed  Google Scholar 

  61. O’Toole, G.A., 2004, Microbiology: Jekyll or hide? Nature, 432:680–681.

    PubMed  Google Scholar 

  62. O’Toole, G.A., and Kolter, R., 1998, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol., 30:295–304.

    PubMed  Google Scholar 

  63. Parkins, M.D., Ceri, H., and Storey, D.G., 2001, Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol. Microbiol., 40:1215–1226.

    PubMed  CAS  Google Scholar 

  64. Parsek, M.R., and Greenberg, E.P., 2005, Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol., 13:27–33.

    PubMed  CAS  Google Scholar 

  65. Parsek, M.R., and Singh, P.K., 2003, Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol., 57:677–701.

    PubMed  CAS  Google Scholar 

  66. Pessi, G., Williams, F., Hindle, Z., Heurlier, K., Holden, M.T., Camara, M., Haas, D., and Williams, P., 2001, The global posttranscriptional regulator RsmA modulates production of virulence determinants and N-acylhomoserine lactones in Pseudomonas aeruginosa. J. Bacteriol., 183:6676–6683.

    PubMed  CAS  Google Scholar 

  67. Peterson, J.D., Umayam, L.A., Dickinson, T., Hickey, E.K., and White, O., 2001, The Comprehensive Microbial Resource. Nucleic Acids Res., 29:123–125.

    PubMed  CAS  Google Scholar 

  68. Pruitt, B.A., Jr., McManus, A.T., Kim, S.H., and Goodwin, C.W., 1998, Burn wound infections: current status. World J. Surg., 22:135–145.

    PubMed  Google Scholar 

  69. Reimmann, C., Beyeler, M., Latifi, A., Winteler, H., Foglino, M., Lazdunski, A., and Haas, D., 1997, The global activator GacA of Pseudomonas aeruginosa PAO positively controls the production of the autoinducer N-butyryl-homoserine lactone and the formation of the virulence factors pyocyanin, cyanide, and lipase. Mol. Microbiol., 24:309–319.

    PubMed  CAS  Google Scholar 

  70. Rietsch, A., and Mekalanos, J.J., 2006, Metabolic regulation of type III secretion gene expression in Pseudomonas aeruginosa. Mol. Microbiol., 59:807–820.

    PubMed  CAS  Google Scholar 

  71. Rietsch, A., Wolfgang, M.C., and Mekalanos, J.J., 2004, Effect of metabolic imbalance on expression of type III secretion genes in Pseudomonas aeruginosa. Infect. Immun., 72:1383–1390.

    PubMed  CAS  Google Scholar 

  72. Rodrigue, A., Quentin, Y., Lazdunski, A., Mejean, V., and Foglino, M., 2000, Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol., 8:498–504.

    PubMed  CAS  Google Scholar 

  73. Romby, P., Vandenesch, F., and Wagner, E.G., 2006, The role of RNAs in the regulation of virulence-gene expression. Curr. Opin. Microbiol., 9:229–236.

    PubMed  CAS  Google Scholar 

  74. Romeo, T., 1998, Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Mol. Microbiol., 29:1321–1330.

    PubMed  CAS  Google Scholar 

  75. Romling, U., and Amikam, D., 2006, Cyclic di-GMP as a second messenger. Curr. Opin. Microbiol., 9:218–228.

    PubMed  Google Scholar 

  76. Roy-Burman, A., Savel, R.H., Racine, S., Swanson, B.L., Revadigar, N.S., Fujimoto, J., Sawa, T., Frank, D.W., and Wiener-Kronish, J.P., 2001, Type III protein secretion is associated with death in lower respiratory and systemic Pseudomonas aeruginosa infections. J. Infect. Dis., 183:1767–1774.

    PubMed  CAS  Google Scholar 

  77. Sadikot, R.T., Blackwell, T.S., Christman, J.W., and Prince, A.S., 2005, Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am. J. Respir. Crit. Care Med., 171:1209–1223.

    PubMed  Google Scholar 

  78. Shankowsky, H.A., Callioux, L.S., and Tredget, E.E., 1994, North American survey of hydrotherapy in modern burn care. J. Burn Care Rehabil., 15:143–146.

    PubMed  CAS  Google Scholar 

  79. Singh, P.K., Parsek, M.R., Greenberg, E.P., and Welsh, M.J., 2002, A component of innate immunity prevents bacterial biofilm development. Nature, 417:552–555.

    PubMed  CAS  Google Scholar 

  80. Singh, P.K., Schaefer, A.L., Parsek, M.R., Moninger, T.O., Welsh, M.J., and Greenberg, E.P., 2000, Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature, 407:762–764.

    PubMed  CAS  Google Scholar 

  81. Smith, R.S., and Iglewski, B.H., 2003, Pseudomonas aeruginosa quorum-sensing systems and virulence. Curr. Opin. Microbiol., 6:56–60.

    PubMed  CAS  Google Scholar 

  82. Smith, R.S., Wolfgang, M.C., and Lory, S., 2004, An adenylate cyclase-controlled signaling network regulates Pseudomonas aeruginosa virulence in a mouse model of acute pneumonia. Infect. Immun., 72:1677–1684.

    PubMed  CAS  Google Scholar 

  83. Stanley, N.R., and Lazazzera, B.A., 2004, Environmental signals and regulatory pathways that influence biofilm formation. Mol. Microbiol., 52:917–924.

    PubMed  CAS  Google Scholar 

  84. Stover, C.K. et al., 2000, Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature, 406:959–964.

    PubMed  CAS  Google Scholar 

  85. Takeda, S., Fujisawa, Y., Matsubara, M., Aiba, H., and Mizuno, T., 2001, A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC–> YojN–> RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol. Microbiol., 40:440–450.

    PubMed  CAS  Google Scholar 

  86. Thomason, P.A., Traynor, D., Stock, J.B., and Kay, R.R., 1999, The RdeA-RegA system, a eukaryotic phospho-relay controlling cAMP breakdown. J. Biol. Chem., 274:27379–27384.

    PubMed  CAS  Google Scholar 

  87. Tomich, M., and Mohr, C.D., 2004, Genetic characterization of a multicomponent signal transduction system controlling the expression of cable pili in Burkholderia cenocepacia. J. Bacteriol., 186:3826–3836.

    PubMed  CAS  Google Scholar 

  88. Trudeau, K.G., Ward, M.J., and Zusman, D.R., 1996, Identification and characterization of FrzZ, a novel response regulator necessary for swarming and fruiting-body formation in Myxococcus xanthus. Mol. Microbiol., 20:645–655.

    PubMed  CAS  Google Scholar 

  89. Vallet, I., Diggle, S.P., Stacey, R.E., Camara, M., Ventre, I., Lory, S., Lazdunski, A., Williams, P., and Filloux, A., 2004, Biofilm formation in Pseudomonas aeruginosa: fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT. J. Bacteriol., 186:2880–2890.

    PubMed  CAS  Google Scholar 

  90. Vallet, I., Olson, J.W., Lory, S., Lazdunski, A., and Filloux, A., 2001, The chaperone/usher pathways of Pseudomonas aeruginosa: identification of fimbrial gene clusters (cup) and their involvement in biofilm formation. Proc. Natl Acad. Sci. U.S.A., 98:6911–6916.

    PubMed  CAS  Google Scholar 

  91. Vallet-Gely, I., Donovan, K.E., Fang, R., Joung, J.K., and Dove, S.L., 2005, Repression of phase-variable cup gene expression by H-NS-like proteins in Pseudomonas aeruginosa. Proc. Natl Acad. Sci. U.S.A., 102:11082–11087.

    PubMed  CAS  Google Scholar 

  92. Vance, R.E., Rietsch, A., and Mekalanos, J.J., 2005, Role of the type III secreted exoenzymes S, T, and Y in systemic spread of Pseudomonas aeruginosa PAO1 in vivo. Infect. Immun., 73:1706–1713.

    PubMed  CAS  Google Scholar 

  93. Vasseur, P., Vallet-Gely, I., Soscia, C., Genin, S., and Filloux, A., 2005, The pel genes of the Pseudomonas aeruginosa PAK strain are involved at early and late stages of biofilm formation. Microbiology, 151:985–997.

    PubMed  CAS  Google Scholar 

  94. Ventre, I., Filloux, A., and Lazdunski, A., 2004, Two-component signal transduction systems: a key to the adaptative potential of Pseudomonas aeruginosa, pp. 257–288. In J.L. Ramos (ed.), Pseudomonas, Vol. 2. Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  95. Ventre, I., Goodman, A.L., Vallet-Gely, I., Vasseur, P., Soscia, C., Molin, S., Bleves, S., Lazdunski, A., Lory, S., and Filloux, A., 2006, Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proc. Natl Acad. Sci. U.S.A., 103:171–176.

    PubMed  CAS  Google Scholar 

  96. Wagner, V.E., Frelinger, J.G., Barth, R.K., and Iglewski, B.H., 2006, Quorum sensing: dynamic response of Pseudomonas aeruginosa to external signals. Trends Microbiol., 14:55–58.

    PubMed  CAS  Google Scholar 

  97. Wang, X., Dubey, A.K., Suzuki, K., Baker, C.S., Babitzke, P., and Romeo, T., 2005, CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol. Microbiol., 56:1648–1663.

    PubMed  CAS  Google Scholar 

  98. Whitchurch, C.B. et al., 2004, Characterization of a complex chemosensory signal transduction system which controls twitching motility in Pseudomonas aeruginosa. Mol. Microbiol., 52:873–893.

    PubMed  CAS  Google Scholar 

  99. Winsor, G.L., Lo, R., Sui, S.J., Ung, K.S., Huang, S., Cheng, D., Ching, W.K., Hancock, R.E., and Brinkman, F.S., 2005, Pseudomonas aeruginosa Genome Database and PseudoCAP: facilitating community-based, continually updated, genome annotation. Nucleic Acids Res., 33:D338–343.

    PubMed  CAS  Google Scholar 

  100. Wolfgang, M.C., Kulasekara, B.R., Liang, X., Boyd, D., Wu, K., Yang, Q., Miyada, C.G., and Lory, S., 2003, Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl Acad. Sci. U.S.A., 100:8484–8489.

    PubMed  CAS  Google Scholar 

  101. Wolfgang, M.C., Lee, V.T., Gilmore, M.E., and Lory, S., 2003, Coordinate regulation of bacterial virulence genes by a novel adenylate cyclase-dependent signaling pathway. Dev. Cell, 4:253–263.

    PubMed  CAS  Google Scholar 

  102. Wozniak, D.J., Wyckoff, T.J., Starkey, M., Keyser, R., Azadi, P., O’Toole, G.A., and Parsek, M.R., 2003, Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Proc. Natl Acad. Sci. U.S.A., 100:7907–7912.

    PubMed  CAS  Google Scholar 

  103. Yahr, T.L., and Greenberg, E.P., 2004, The genetic basis for the commitment to chronic versus acute infection in Pseudomonas aeruginosa. Mol. Cell, 16:497–498.

    PubMed  Google Scholar 

  104. Zolfaghar, I., Angus, A.A., Kang, P.J., To, A., Evans, D.J., and Fleiszig, S.M., 2005, Mutation of retS, encoding a putative hybrid two-component regulatory protein in Pseudomonas aeruginosa, attenuates multiple virulence mechanisms. Microbes Infect., 7:1305–1316.

    PubMed  CAS  Google Scholar 

  105. Zolfaghar, I., Evans, D.J., Ronaghi, R., and Fleiszig, S.M., 2006, Type III secretion-dependent modulation of innate immunity as one of multiple factors regulated by Pseudomonas aeruginosa RetS. Infect. Immun., 74:3880–3889.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Ventre, I., Goodman, A.L., Filloux, A., Lory, S. (2007). Modulation of Bacterial Lifestyles via Two-Component Regulatory Networks. In: Ramos, JL., Filloux, A. (eds) Pseudomonas. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6097-7_11

Download citation

Publish with us

Policies and ethics