Skip to main content

Simulation of Forming Processes by the α-Shapes-Based Natural Element Method

  • Conference paper
Advances in Meshfree Techniques

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 5))

  • 1617 Accesses

Abstract

In this paper we review some of the authors’ more recent developments in the field of Forming Processes simulation by means of meshless methods. In particular, all simulations are performed by employing the Natural Element Method (NEM), which has shown some particular characteristics that make it appear as an appealing tool for this kind of problems. Applications include forging, aluminum extrusion and other related forming processes. Particularly, the treatment of the free surface deserves some comments, since it is done in this work by means of alpha-shapes, a particular shape constructor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Cueto, B. Calvo, and M. Doblaré. Modeling three-dimensional piece-wise homogeneous domains using the α-shape based Natural Element Method. International Journal for Numerical Methods in Engineering, 54:871–897, 2002.

    Article  MATH  Google Scholar 

  2. E. Cueto, J. Cegoñino, B. Calvo, and M. Doblaré. On the imposition of essential boundary conditions in Natural Neighbour Galerkin methods. Communications in Numerical Methods in Engineering, 19(5):361–376, 2003.

    Article  MATH  Google Scholar 

  3. E. Cueto, M. Doblaré, and L. Gracia. Imposing essential boundary conditions in the Natural Element Method by means of density-scaled α-shapes. International Journal for Numerical Methods in Engineering, 49-4:519–546, 2000.

    Article  Google Scholar 

  4. E. Cueto, N. Sukumar, B. Calvo, M. A. MartÍnez, J. Cegoñino, and M. Doblaré. Overview and recent advances in Natural Neighbour Galerkin methods. Archives of Computational Methods in Engineering, 10(4):307–384, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Delaunay. Sur la Sphère Vide. A la memoire de Georges Voronoi. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, 7:793–800, 1934.

    Google Scholar 

  6. H. Edelsbrunner and E. Mücke. Three dimensional alpha shapes. ACM Transactions on Graphics, 13:43–72, 1994.

    Article  MATH  Google Scholar 

  7. L. Filice, I. Alfaro, F. Gagliardi, E. Cueto, F. Micari, and F. Chinesta. Cross extrusion with asymmetric die: A first preliminary comparison between finite element and meshless formulation predictions. In A. Rosochowsky, editor, ESAFORM Conference on Material Forming, Strathclyde University, Glasgow, UK, 2006.

    Google Scholar 

  8. D. González, E. Cueto, and M. Doblaré. Volumetric locking in Natural Neighbour Galerkin methods. International Journal for Numerical Methods in Engineering, 61(4):611–632, 2004.

    Article  MathSciNet  Google Scholar 

  9. H. Hiyoshi and K. Sugihara. Two generalizations of an interpolant based on Voronoi diagrams. International Journal of Shape Modeling, 5(2):219–231, 1999.

    Article  Google Scholar 

  10. S. R. Idelsohn, E. Oñate, N. Calvo, and F. Del Pin. The meshless finite element method. International Journal for Numerical Methods in Engineering, 58:893–912, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  11. R.W. Lewis, S. E. Navti, and C. Taylor. A mixed Lagrangian-Eulerian approach to modelling fluid flow during mould filling. International Journal for Numerical Methods in Engineering, 25:931–952, 1997.

    Article  MATH  Google Scholar 

  12. J. Lof and Y. Blokhuis. FEM simulations of the extrusion of complex thin-walled aluminium sections. Journal of Materials Processing Technology, 122:344–354, 2002.

    Article  Google Scholar 

  13. P. Perzyna. Fundamental problems in visco-plasticity. In Recent Advances in Applied Mechanics. Academic Press, New York, 1966.

    Google Scholar 

  14. C. M. Sellars and W. J. M. Tegart. Hot workability. International Metallurgical Review, 17:1–24, 1972.

    Google Scholar 

  15. R. Sibson. A vector identity for the Dirichlet Tesselation. Mathematical Proceedings of the Cambridge Philosophical Society, 87:151–155, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Sibson. A brief description of natural neighbour interpolation. In Interpreting Multivariate Data. V. Barnett (Ed.). John Wiley, 1981, pp. 21–36.

    Google Scholar 

  17. N. Sukumar, J. Dolbow, A. Devan, J. Yvonnet, F. Chinesta, D. Ryckelynck, P. Lorong, I. Alfaro, M. A. Martínez, E. Cueto, and M. Doblaré. Meshless methods and partition of unity finite elements. Internatonal Journal of Forming Processes, to appear, 2004.

    Google Scholar 

  18. N. Sukumar, B. Moran, and T. Belytschko. The Natural Element Method in solid mechanics. International Journal for Numerical Methods in Engineering, 43(5):839–887, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  19. N. Sukumar, B. Moran, A. Yu Semenov, and V. V. Belikov. Natural Neighbor Galerkin methods. International Journal for Numerical Methods in Engineering, 50(1):1–27, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  20. A. H. Thiessen. Precipitation averages for large areas. Monthly Weather Report, 39:1082–1084, 1911.

    Google Scholar 

  21. G. M. Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième memoire: Recherches sur les parallélloèdres primitifs. J. Reine Angew. Math., 134:198–287, 1908.

    MATH  Google Scholar 

  22. J. Yvonnet, D. Ryckelynck, P. Lorong, and F. Chinesta. A new extension of the Natural Element method for non-convex and discontinuous problems: The Constrained Natural Element method. International Journal for Numerical Methods in Enginering, 60(8):1452–1474, 2004.

    MathSciNet  Google Scholar 

  23. O. C. Zienkiewicz and P. N. Godbolet. Flow of plastic and visco-plastic solids with special reference to extrusion and forming processes. International Journal for Numerical Methods in Engineering, 8:3–16, 1974.

    MATH  Google Scholar 

  24. O. C. Zienkiewicz, P. C. Pain, and E. Oñate. Flow of solids during forming and extrusion: Some aspects of numerical solutions. International Journal of Solids and Structures, 14:15–38, 1978.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Alfaro, I., Cueto, E., Chinesta, F., Doblaré, M. (2007). Simulation of Forming Processes by the α-Shapes-Based Natural Element Method. In: Leitão, V.M.A., Alves, C.J.S., Armando Duarte, C. (eds) Advances in Meshfree Techniques. Computational Methods in Applied Sciences, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6095-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-6095-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-6094-6

  • Online ISBN: 978-1-4020-6095-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics