Advertisement

Study of Some Optimal XFEM Type Methods

  • Elie Chahine
  • Patrick Laborde
  • Julien Pommier
  • Yves Renard
  • Michel Salaün
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 5)

Abstract

The XFEM method in fracture mechanics is revisited. A first improvement is considered using an enlarged fixed enrichment subdomain around the crack tip and a bonding condition for the corresponding degrees of freedom. An efficient numerical integration rule is introduced for the nonsmooth enrichment functions. The lack of accuracy due to the transition layer between the enrichment aera and the rest of the domain leads to consider a pointwise matching condition at the boundary of the subdomain. An optimal numerical rate of convergence is then obtained using such a nonconformal method.

Key words

Fracture finite elements XFEM method optimal rate of convergence pointwise matching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Babuška and J. M. Melenk. The Partition of Unity Method. Int. J. Numer. Meth. Engng., 40:27–758, 1997.Google Scholar
  2. 2.
    T. Belytschko, N. Moës, S. Usui and C. Parimi. Arbitrary discontinuities in finite elements. Int. J. Numer. Meth. Eng., 50(4): 993–1013, 2000.CrossRefGoogle Scholar
  3. 3.
    E. Béchet, H. Minnebo, N. Moës and B. Burgardt. Improved implementation and robustness study of the X-FEM for stress analysis around cracks. Int. J. Numer. Meth. Engng., 64:1033–1056, 2005.MATHCrossRefGoogle Scholar
  4. 4.
    E. Chahine, P. Laborde, Y. Renard. A quasi-optimal convergence result for fracture mechanics with XFEM. C. R. Acad. Sci., Paris, Ser. I, 342:527–532, 2006.MATHMathSciNetGoogle Scholar
  5. 5.
    E. Chahine, P. Laborde, Y. Renard. Crack tip enrichment in the XFEM method using a cut-off function. Submitted.Google Scholar
  6. 6.
    J. Chessa, H. W. Wang, T. Belytschko. On construction of blending elements for locally partition of unity enriched finite element methods. Internat. J. Numer. Meth. Engr., 57(7):1015–1038, 2003.MATHCrossRefGoogle Scholar
  7. 7.
    C.A.M. Duarte, I. Babuška and J.T. Oden. Generalized finite element method for three-dimensional structural mechanics problems. Computers and Structures, 77:219–232, 2000.CrossRefGoogle Scholar
  8. 8.
    A. Gravouil, N. Moës and T. Belytschko. Non-planar 3D crack growth by the extended finite element and level sets, Part II: Level set update. Int. J. Numer. Meth. Eng., 53(11):2569–2586, 2002.CrossRefGoogle Scholar
  9. 9.
    P. Grisvard. Singularities in Boundary Value Problems. Masson, 1992.Google Scholar
  10. 10.
    P. Grisvard. Problèmes aux limites dans les polygones — Mode d’emploi EDF Bull. Direction Etudes Rech. Série C Math. Inform., 1:21–59, 1986.MathSciNetGoogle Scholar
  11. 11.
    P. Laborde, Y. Renard, J. Pommier and M. Salaün. High order extended finite element method for cracked domains. Int. J. Numer. Meth. Engng., 64:354–381, 2005.MATHCrossRefGoogle Scholar
  12. 12.
    J. B. Leblond. Mécanique de la Rupture Fragile et Ductile. Hermes, Lavoisier, 2003.MATHGoogle Scholar
  13. 13.
    J. Lemaitre and J.-L. Chaboche Mechanics of Solid Materials. Cambridge University Press, 1994.Google Scholar
  14. 14.
    J.M. Melenk and I. Babuška. The partition of unity finite element method: Basic theory and applications. Comput. Meth. Appl. Mech. Engng., 139:289–314, 1996.MATHCrossRefGoogle Scholar
  15. 15.
    N. Moës, J. Dolbow, and T. Belytschko. A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Engng., 46:131–150, 1999.MATHCrossRefGoogle Scholar
  16. 16.
    N. Moës, A. Gravouil and T. Belytschko. Non-planar 3D crack growth by the extended finite element and level sets, Part I: Mechanical model. Int. J. Numer. Meth. Engng., 53(11):2549–2568, 2002.MATHCrossRefGoogle Scholar
  17. 17.
    J. Pommier and Y. Renard. Getfem++. An Open Source generic C++ library for finite element methods, http://www.gmm.insa-toulouse.fr/getfem.Google Scholar
  18. 18.
    F.L. Stazi, E. Budyn, J. Chessa and T. Belytschko. An extended finite element method with higher-order elements for curved cracks. Comput. Mech., 31:38–48, 2003.MATHCrossRefGoogle Scholar
  19. 19.
    N. Sukumar, N. Moës, B. Moran and T. Belytschko. Extended finite element method for three dimensional crack modelling. Int. J. Numer. Meth. Engng., 48:1549–1570, 2000.MATHCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Elie Chahine
    • 1
  • Patrick Laborde
    • 2
  • Julien Pommier
    • 1
  • Yves Renard
    • 1
  • Michel Salaün
    • 3
  1. 1.Laboratoire MIP, CNRS UMR 5640, Complexe scientifique de RangueilINSAToulouseFrance
  2. 2.Laboratoire MIP, CNRS UMR 5640Université P. SabatierToulouse Cedex 4France
  3. 3.ENSICAToulouse Cedex 5France

Personalised recommendations