ADMET Polymerization Activities of Electrochemically Reduced W-Based Active Species for Ge- and Sn-Containing Dienes

  • Yavuz Imamoglu
  • Cemil Aydogdu
  • Solmaz Karabulut
  • Bülent Düz
Conference paper
Part of the NATO Science Series book series (NAII, volume 243)

In the last 20 years metal atom-containing polymers have become important classes of polymers [1]. Properties like high thermic stability, electric, and photo conductometry make them very interesting for producing films, fibers, and coating [2]. Many of these compounds can be synthesized by conventional methods [3]. For producing metal-containing polymers anionic, cationic, and radicalic polymerizations were used [4–6]. Metal-containing polymers were also synthesized via acyclic diene metathesis (ADMET) polymerization that is facilitated by Schrock’s molybdenum alkylidene, or Grubbs’ ruthenium carbene catalyst [7–9]. In 1979, Gilet and coworkers succeeded in synthesizing metathetically active species from electrochemical reduction of WCl6 and MoCl5 [10,11]. In the light of these works, we have showed that electrochemically generated tungsten-based active species (WCl6-e––Al–CH2Cl2) catalyzes various metathesis-related reactions [12–16].


Active Species Monomer Concentration Electrochemical Reduction Catalyst System Polymerization Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Sheats, J.E., Carraher, C.E., Pittman, C.U., Metal Containing Polymer Systems, Plenum Press, New York, 1985, p. 1.Google Scholar
  2. [2]
    Bill, J., Aldringer, F., Adv. Mater. 1995, 7:775.CrossRefGoogle Scholar
  3. [3]
    Neuse, E.W., Adv. Macromol. Chem. 1968, 1:1.Google Scholar
  4. [4]
    Hayashi, T., Uchimaru, Y., Reddy, N.P., Tanaka, M., Chem. Lett. 1992, 647.Google Scholar
  5. [5]
    Brefort, J.L., Corriu, R.J.P., Gerin, C., Henner, B.J.L., J. Organometal. Chem. 1994, 133:464.Google Scholar
  6. [6]
    Shoda, S., Iwata, S., Yajima, K., Yagi, K., Ohnishi, Y., Kobayashi, S., Tetrahedron 1997, 53:15281.CrossRefGoogle Scholar
  7. [7]
    Smith, D.W. Jr., Wagener, K.B., Macromolecules 1991, 24:6073.CrossRefGoogle Scholar
  8. [8]
    Wolfe, P.S., Gomez, F.J., Wagener, K.B., Macromolecules 1997, 30:14.Google Scholar
  9. [9]
    Gomez, F.J., Wagener, K.B., J. Organomet. Chem. 1999, 59:2271.Google Scholar
  10. [10]
    Gilet, M., Mortreux, A., Nicole, J., Petit, F., JCS Chem. Commun. 1979, 521.Google Scholar
  11. [11]
    Gilet, M., Mortreux, A., Folest, J.C., Petit, F., J. Am. Chem. Soc. 1983, 105:3876.CrossRefGoogle Scholar
  12. [12]
    Düz, B., Pekmez, K., İmamoğlu, Y., Süzer, Ş., Yıldız, A., J. Organometal. Chem. 2003, 77:684.Google Scholar
  13. [13]
    Karabulut, S., Çetinkaya, S., Düz, B., İmamoğlu, Y., Appl. Organomet. Chem. 2004, 18:375.CrossRefGoogle Scholar
  14. [14]
    Çetinkaya, S., Karabulut, S., İmamoğlu, Y., Appl. Organomet. Chem. 2005, 19:997.CrossRefGoogle Scholar
  15. [15]
    Çetinkaya, S., Karabulut, S., İmamoğlu, Y., Eur. Pol. J. 2005, 41:467.CrossRefGoogle Scholar
  16. [16]
    Dereli, O., Düz, B., Zümreoğlu, B.K., İmamoğlu, Y., Appl. Organomet. Chem. 2003, 17:23.CrossRefGoogle Scholar
  17. [17]
    Karabulut, S., Aydogdu, C., Düz, B., İmamoğlu, Y., J. Mol. Catal. 2006, 254:186.CrossRefGoogle Scholar
  18. [18]
    Karabulut, S., Aydogdu, C., Düz, B., İmamoğ lu, Y., J. Inorg. Organomet. Polym. Mat. 2006, 16:115.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Yavuz Imamoglu
    • 1
  • Cemil Aydogdu
    • 1
  • Solmaz Karabulut
    • 2
  • Bülent Düz
    • 1
  1. 1.Department of ChemistryHacettepe UniversityBeytepeTurkey
  2. 2.Faculty of ScienceHacettepe UniversityBeytepeTurkey

Personalised recommendations