Tumor Antigens

  • Michael A. Morse
  • Timothy M. Clay
  • H Kim Lyerly

Keywords

Clay Lymphoma Codon Leukemia Oncol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. van der Bruggen, C. Traversari, P. Chomez, C. Lurquin, E. De Plaen, B. Van den Eynde, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma, Science 254, 1643–7(1991).PubMedCrossRefGoogle Scholar
  2. 2.
    L. Novellino, C. Castelli, G. Parmiani, A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol. Immunother. 54(3), 187–207 (2005).PubMedCrossRefGoogle Scholar
  3. 3.
    M. Probst-Kepper, V. Stroobant, R. Kridel, B. Gaugler, C. Landry, F. Brasseur, J.P. Cosyns, B. Weynand, T. Boon, B.J. Van Den Eynde, An alternative open reading frame of the human macrophage colony-stimulating factor gene is independently translated and codes for an antigenic peptide of 14 amino acids recognized by tumor-infiltrating CD8 T lymphocytes, J. Exp. Med. 193, 1189 (2001).PubMedCrossRefGoogle Scholar
  4. 4.
    Y. Hirohashi, T. Torigoe, A. Maeda, Y. Nabeta, K. Kamiguchi, T. Sato, J. Yoda, H. Ikeda, K. Hirata, N. Yamanaka, N. Sato, An HLA-A24-restricted cytotoxic T lymphocyte epitope of a tumor-associated protein, survivin. Clin. Cancer Res. 8, 1731 (2002).PubMedGoogle Scholar
  5. 5.
    K. Hanada, J.W. Yewdell, J.C. Yang, Immune recognition of a human renal cancer antigen through post-translational protein splicing, Nature 427, 252 (2004).PubMedCrossRefGoogle Scholar
  6. 6.
    B.J. Van Den Eynde, B. Gaugler, M. Probst-Kepper, L. Michaux, O. Devuyst, F. Lorge, P. Weynants, T. Boon, A new antigen recognized by cytolytic T lymphocytes on a human kidney tumor results from reverse strand transcription, J. Exp. Med. 190, 1793–800 (1999).CrossRefGoogle Scholar
  7. 7.
    D. Valmori, U. Gileadi, C. Servis, P.R. Dunbar, J.C. Cerottini, P. Romero, et al. Modulation of proteasomal activity required for the generation of a cytotoxic T lymphocyte-defined peptide derived from the tumor antigen MAGE-3. J. Exp. Med. 189, 895–906 (1999).PubMedCrossRefGoogle Scholar
  8. 8.
    P. van der Bruggen, C. Traversari, P. Chomez, C. Lurquin, E. De Plaen, B. Van den Eynde, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma, Science 254, 1643–7 (1991).PubMedCrossRefGoogle Scholar
  9. 9.
    C. Traversari, P. van der Bruggen, I.F. Luescher, C. Lurquin, P. Chomez, A. Van Pel, E. De Plaen, A. Amar-Costesec, T. Boon, A nonapeptide encoded by human gene MAGE-1 is recognized on HLA-A1 by cytolytic T lymphocytes directed against tumor antigen MZ2-E, J. Exp. Med. 176, 1453–7(1992).PubMedCrossRefGoogle Scholar
  10. 10.
    T. Itoh, W.J. Storkus, E. Gorelik, M.T. Lotze, Partial purification of murine tumor-associated peptide epitopes common to histologically distinct tumors, melanoma and sarcoma, that are presented by H-2Kb molecules and recognized by CD8+ tumor-infiltrating lymphocytes, J. Immunol. 153(3),1202–15 (1994).PubMedGoogle Scholar
  11. 11.
    H. Rammensee, J. Bachmann, N.P. Emmerich, O.A. Bachor, S. Stevanovic, SYFPEITHI: database for MHC ligands and peptide motifs, Immunogenetics 50, 213–9 (1999).PubMedCrossRefGoogle Scholar
  12. 12.
    E. Keogh, J. Fikes, S. Southwood, E. Celis, R. Chesnut, A. Sette, Identification of new epitopes from four different tumor-associated antigens: recognition of naturally processed epitopes correlates with HLA-A*0201-binding affinity, J. Immunol. 167, 787–796 (2001).PubMedGoogle Scholar
  13. 13.
    M.R. Parkhurst, M.L. Salgaller, S. Southwood, P.F. Robbins, A. Sette, S.A. Rosenberg et al. Improved induction of melanoma-reactive CTL with peptides from the melanoma antigen gp100 modified at HLA-A*0201-binding residues, J. Immunol. 157, 2539–2548 (1996).PubMedGoogle Scholar
  14. 14.
    B. Fisk, C. Savary, J.M. Hudson, C.A. O’Brian , J.L. Murray, J.T. Wharton et al. Changes in an HER-2 peptide upregulating HLA-A2 expression affect both conformational epitopes and CTL recognition: implications for optimization of antigen presentation and tumor-specific CTL induction, J. Immunother. 18, 197–209 (1996).CrossRefGoogle Scholar
  15. 15.
    M.W. Schreurs, E.W. Kueter, K.B. Scholten, D. Kramer, C.J. Meijer, E. Hooijberg, Identification of a potential human telomerase reverse transcriptase-derived, HLA-A1-restricted cytotoxic T-lymphocyte epitope, Cancer Immunol. Immunother. (2005).Google Scholar
  16. 16.
    J.E. Slansky, F.M. Rattis, L.F. Boyd, T. Fahmy, E.M. Jaffee, J.P. Schneck et al. Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex, Immunity 13, 529–538 (2000).PubMedCrossRefGoogle Scholar
  17. 17.
    S. Zaremba, E. Barzaga, M.Z. Zhu, N. Soares, K.Y. Tsang, J. Schlom, Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen, Cancer Res. 57,4570–4577 (1997).PubMedGoogle Scholar
  18. 18.
    L. Fong, Y. Hou, A. Rivas, C. Benike, A. Yuen, G.A. Fisher et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy, Proc Natl Acad Sci USA 98, 8809–8814 (2001).PubMedCrossRefGoogle Scholar
  19. 19.
    M. Alsheimer, T. Drewes, W. Schutz, R. Benavente, The cancer/testis antigen CAGE-1 is a component of the acrosome of spermatids and spermatozoa, Eur. J. Cell. Biol. 84, 445–52 (2005).PubMedCrossRefGoogle Scholar
  20. 20.
    G. Cronwright, K. Le Blanc, C. Gotherstrom, P. Darcy, M. Ehnman, B. Brodin, Cancer/testis antigen expression in human mesenchymal stem cells: down-regulation of SSX impairs cell migration and matrix metalloproteinase 2 expression, Cancer. Res. 65, 2207–15 (2005).PubMedCrossRefGoogle Scholar
  21. 21.
    C. De Smet, C. Lurquin, B. Lethe, V. Martelange, T. Boon, DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter, Mol. Cell. Biol. 19, 7327 (1999).PubMedGoogle Scholar
  22. 22.
    J.H. Lim, S.P. Kim, E. Gabrielson, Y.B. Park, J.W. Park, T.K. Kwon, Activation of human cancer/testis antigen gene, XAGE-1, in tumor cells is correlated with CpG island hypomethylation, Int. J. Cancer (2005).Google Scholar
  23. 23.
    L. Sigalotti, E. Fratta, S. Coral, S. Tanzarella, R. Danielli, F. Colizzi, E. Fonsatti, C. Traversari, M. Altomonte, M. Maio, Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2’-deoxycytidine, Cancer Res. 64(24),9167–71 (2004).PubMedCrossRefGoogle Scholar
  24. 24.
    M.J. Scanlan, A.J. Simpson, L.J. Old, The cancer/testis genes: review, standardization, and commentary, Cancer Immun. 4, 1 (2004).PubMedGoogle Scholar
  25. 25.
    K. Mashino, N. Sadanaga, F. Tanaka, H. Yamaguchi, H. Nagashima, H. Inoue, K. Sugimachi, M. Mori, Expression of multiple cancer-testis antigen genes in gastrointestinal and breast carcinomas, Br. J. Cancer 85, 713–20 (2001).PubMedCrossRefGoogle Scholar
  26. 26.
    A.A. Jungbluth, S. Ely, M. Diliberto, R. Niesvizky, B. Williamson, D. Frosina, Y.T. Chen, N. Bhardwaj, S. Chen-Kiang, L.J. Old, H.J. Cho, The Cancer-Testis antigens CT7 (MAGE-C1) and MAGE-A3/6 are commonly expressed in multiple myeloma and correlate with plasma cell proliferation, Blood (2005).Google Scholar
  27. 27.
    G. Melloni, A.J. Ferreri, V. Russo, L. Gattinoni, G. Arrigoni, G.L. Ceresoli, P. Zannini, C. Traversari, Prognostic significance of cancer-testis gene expression in resected non-small cell lung cancer patients, Oncol. Rep. 12, 145–51 (2004).PubMedGoogle Scholar
  28. 28.
    M. Li, Y.H. Yuan, Y. Han, Y.X. Liu, L. Yan, Y. Wang, J. Gu, Expression profile of cancer-testis genes in 121 human colorectal cancer tissue and adjacent normal tissue, Clin. Cancer Res. 11, 1809–14 (2005).PubMedCrossRefGoogle Scholar
  29. 29.
    M. Mandic, C. Almunia, S. Vicel, D. Gillet, B. Janjic, K. Coval, BB. Maillere, J.M. Kirkwood, H.M. Zarour, The alternative open reading frame of LAGE-1 gives rise to multiple promiscuous HLA-DR-restricted epitopes recognized by T-helper 1-type tumor-reactive CD4+ T Cells, Cancer Res. 63, 6506–15 (2003).PubMedGoogle Scholar
  30. 30.
    J. Ries, S. Schultze-Mosgau, F. Neukam, E. Diebel, J. Wiltfang, Investigation of the expression of melanoma antigen-encoding genes (MAGE-A1 to -A6) in oral squamous cell carcinomas to determine potential targets for gene-based cancer immunotherapy, Int. J. Oncol. 26, 817–24 (2005).PubMedGoogle Scholar
  31. 31.
    N.H. Segal, N.E. Blachere, J.A. Guevara-Patino, H.F. Gallardo, H.Y. Shiu, A. Viale, C.R. Antonescu, J.D. Wolchok, A.N. Houghton, Identification of cancer-testis genes expressed by melanoma and soft tissue sarcoma using bioinformatics, Cancer Immun. 5, 2 (2005).PubMedGoogle Scholar
  32. 32.
    T. Utsunomiya, H. Inoue, F. Tanaka, H. Yamaguchi, M. Ohta, M. Okamoto, K. Mimori, M. Mori, Expression of cancer-testis antigen (CTA) genes in intrahepatic cholangiocarcinoma, Ann. Surg. Oncol. 11, 934–40 (2004).PubMedCrossRefGoogle Scholar
  33. 33.
    L. Zhao, D.C. Mou, X.S. Leng, J.R. Peng, W.X. Wang, L. Huang, S. Li, J.Y. Zhu, Expression of cancer-testis antigens in hepatocellular carcinoma, World J. Gastroenterol. 10, 2034–8 (2004).PubMedGoogle Scholar
  34. 34.
    M. Li, Y.H. Yuan, Y. Han, Y.X. Liu, L. Yan, Y. Wang, J. Gu, Expression profile of cancer-testis genes in 121 human colorectal cancer tissue and adjacent normal tissue, Clin. Cancer Res. 11(5), 1809–14 (2005).PubMedCrossRefGoogle Scholar
  35. 35.
    K.A. Chianese-Bullock, J. Pressley, C. Garbee, S. Hibbitts, C. Murphy, G. Yamshchikov, G.R. Petroni, E.A. Bissonette, P.Y. Neese, W.W. Grosh, P. Merrill, R. Fink, E.M. Woodson, C.J. Wiernasz, J.W. Patterson, C.L. Slingluff Jr., MAGE-A1-, MAGE-A10-, and gp100-derived peptides are immunogenic when combined with granulocyte-macrophage colony-stimulating factor and montanide ISA-51 adjuvant and administered as part of a multipeptide vaccine for melanoma, J. Immunol. 17, 3080–6 (2005).Google Scholar
  36. 36.
    J. Xiao, H.S. Chen, Biological functions of melanoma-associated antigens. World J. Gastroenterol. 10(13), 1849–53 (2004).PubMedGoogle Scholar
  37. 37.
    M.A. Morse, J. Garst, T. Osada, S. Khan, A. Hobeika, T.M. Clay, N. Valente, R. Shreeniwas, M.A. Sutton, A. Delcayre, D.H. Hsu, J.B. Le Pecq, H.K. Lyerly, A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer, J. Transl. Med. 3 (1), 9 (2005).PubMedCrossRefGoogle Scholar
  38. 38.
    D. Atanackovic, N.K. Altorki, E. Stockert, B. Williamson, A.A. Jungbluth, E. Ritter, D. Santiago, C.A. Ferrara, M. Matsuo, A. Selvakumar, B. Dupont, Y.T. Chen, E.W. Hoffman, G. Ritter, L.J. Old, S. Gnjatic, Vaccine-induced CD4+ T cell responses to MAGE-3 protein in lung cancer patients, J. Immunol. 172(5), 3289–96 (2004).PubMedGoogle Scholar
  39. 39.
    S. Graff-Dubois, O. Faure, D.A. Gross, P. Alves, A. Scardino, S. Chouaib, F.A. Lemonnier, K. Kosmatopoulos, Generation of CTL recognizing an HLA-A*0201-restricted epitope shared by MAGE-A1, -A2, -A3, -A4, -A6, -A10, and -A12 tumor antigens: implication in a broad-spectrum tumor immunotherapy, J. Immunol. 169(1), 575–80 (2002).PubMedGoogle Scholar
  40. 40.
    E. Jager, Y.T. Chen, J.W. Drijfhout, J. Karbach, M. Ringhoffer, D. Jager, et al. Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes, J. Exp. Med. 187, 265–270 (1998).Google Scholar
  41. 41.
    R.F. Wang, S.L. Johnston, G. Zeng, S.L.Topalian, D.J. Schwartzentruber, S.A. Rosenberg, A breast and melanoma-shared tumor antigen: T cell responses to antigenic peptides translated from different open reading frames, J. Immunol. 161, 598–3606 (1998).Google Scholar
  42. 42.
    M. Schirle, W. Keilholz, B. Weber, et al. Identification of tumor-associated MHC class I ligands by a novel T cell-independent approach, Eur. J. Immunol. 30, 2216–2225 (2000).PubMedCrossRefGoogle Scholar
  43. 43.
    N.L. Berinstein, Carcinoembryonic antigen as a target for therapeutic anticancer vaccines: a review, J. Clin. Oncol. 20(8), 2197–207 (2002).PubMedCrossRefGoogle Scholar
  44. 44.
    J.L. Marshall, J.L. Gulley, P.M. Arlen, P.K. Beetham, K.Y. Tsang, R. Slack, J.W. Hodge, S. Doren, D.W. Grosenbach, J. Hwang, E. Fox, L. Odogwu, S. Park, D. Panicali, J. Schlom, Phase I study of sequential vaccinations with fowlpox-CEA(6D)-TRICOM alone and sequentially with vaccinia-CEA(6D)-TRICOM, with and without granulocyte-macrophage colony-stimulating factor, in patients with carcinoembryonic antigen-expressing carcinomas, J. Clin. Oncol. 23(4), 720–31 (2005).PubMedCrossRefGoogle Scholar
  45. 45.
    M.A. Morse, T.M. Clay, A.C. Hobeika, T. Osada, S. Khan, S. Chui, D. Niedzwiecki, D. Panicali, J. Schlom, H.K. Lyerly, Phase I study of immunization with dendritic cells modified with fowlpox encoding carcinoembryonic antigen and costimulatory molecules, Clin. Cancer Res. 11(8), 3017–24 (2005).PubMedCrossRefGoogle Scholar
  46. 46.
    M. Salio, D. Shepherd, P.R. Dunbar, M. Palmowski, K. Murphy, L. Wu, V. Cerundolo, Mature dendritic cells prime functionally superior Melan-A-specific CD8thchar lymphocytes as compared with nonprofessional APC, J. Immunol. 167, 1188–1197 (2001).PubMedGoogle Scholar
  47. 47.
    F.O. Nestle, S. Alijac, M. Gilliet, Y. Sun, S. Grabbe, R. Dummer, G. Burg, D. Schadendorf, Vaccination of melanoma patients with peptide or tumor lysate-pulsed dendritic cells, Nat. Med. 4, 328–332 (1998).PubMedCrossRefGoogle Scholar
  48. 48.
    P. Romero, N. Gervois, J. Schneider, P. Escobar, D. Valmori, C. Pannetier, A. Steinle, T. Weuroolfel, D. Lienard, V. Brichard, A. Van Pel, F. Jotereau, J.C. Cerottini, Cytolytic T lymphocyte recognition of the immunodominant HLA-A*0201 restricted Melan-A/MART-1 antigenic peptide in melanoma, J. Immunol. 158, 2366–2374 (1997).Google Scholar
  49. 49.
    D. Valmori, J.F. Fonteneau, C. Lizana, N. Gervois, D. Lienard, D. Rimoldi, V. Jongeneel, F. Jotereau, J.C. Cerottini, P. Romero, Enhanced generation of specific tumor-reactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogues, J. Immunol. 160, 1750–1758 (1998).PubMedGoogle Scholar
  50. 50.
    G. Guichard, A. Zerbib, F.A. Le Gal, J. Hoebeke, F. Connan, J. Choppin, J.P. Briand, J.G.Guillet, Melanoma peptide MART-1(27–35) analogues with enhanced binding capacity to the human class I histocompatibility molecule HLA-A2 by introduction of a beta-amino acid residue: implications for recognition by tumor-infiltrating lymphocytes, J. Med. Chem. 43(20), 3803–8 (2000).PubMedCrossRefGoogle Scholar
  51. 51.
    Y. Men, I. Miconnet, D. Valmori, D. Rimoldi, J.C. Cerottini, P. Romero, Assessment of immunogenicity of human Melan-A peptide analogues in HLA-A*0201/Kb transgenic mice, J. Immunol. 162, 3566–3573 (1999).PubMedGoogle Scholar
  52. 52.
    R. Wong, R. Lau, J. Chang, T. Kuus-Reichel, V. Brichard, C. Bruck, J. Weber, Immune responses to a class II helper peptide epitope in patients with stage III/IV resected melanoma, Clin. Cancer Res. 10(15), 5004–13 (2004).PubMedCrossRefGoogle Scholar
  53. 53.
    P. Hersey, S.W. Menzies, G.M. Halliday, T. Nguyen, M.L. Farrelly, C. DeSilva, M. Lett, Phase I/II study of treatment with dendritic cell vaccines in patients with disseminated melanoma, Cancer Immunol. Immunother. 53(2), 125–34 (2004).PubMedCrossRefGoogle Scholar
  54. 54.
    G.Q. Phan, C.E. Touloukian, J.C. Yang, N.P. Restifo, R.M. Sherry, P. Hwu, S.L. Topalian, D.J. Schwartzentruber, C.A. Seipp, L.J. Freezer, K.E. Morton, S.A. Mavroukakis, D.E. White, S.A. Rosenberg, Immunization of patients with metastatic melanoma using both class I- and class II-restricted peptides from melanoma-associated antigens, J. Immunother. 26(4), 349–56 (2003).PubMedCrossRefGoogle Scholar
  55. 55.
    V. Pullarkat, P.P. Lee, R. Scotland, V. Rubio, S. Groshen, C. Gee, R. Lau, J. Snively, S. Sian, S.L. Woulfe, R.A. Wolfe, J.S.Weber, A phase I trial of SD-9427 (progenipoietin) with a multipeptide vaccine for resected metastatic melanoma, Clin. Cancer Res. 9 (4), 1301–12 (2003).PubMedGoogle Scholar
  56. 56.
    Z. Su, J. Dannull, B.K. Yang, P. Dahm, D. Coleman, D. Yancey, S. Sichi, D. Niedzwiecki, D. Boczkowski, E. Gilboa, J.Vieweg, Telomerase mRNA-transfected dendritic cells stimulate antigen-specific CD8+ and CD4+ T cell responses in patients with metastatic prostate cancer, J. Immunol. 174 (6), 3798–807 (2005).PubMedGoogle Scholar
  57. 57.
    M. Zanetti, X. Hernandez, P. Langlade-Demoyen, Telomerase reverse transcriptase as target for anti-tumor T cell responses in humans, Springer Semin. Immunopathol. (2005).Google Scholar
  58. 58.
    M. Zeis, S. Siegel, A. Wagner, M. Schmitz, M. Marget, R. Kuhl-Burmeister, I. Adamzik, D. Kabelitz, P. Dreger, N. Schmitz, A.Heiser, Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells, J. Immunol. 170 (11), 5391–7 (2003).PubMedGoogle Scholar
  59. 59.
    S. Idenoue, Y. Hirohashi, T. Torigoe, Y. Sato, Y. Tamura, H. Hariu, M. Yamamoto, T. Kurotaki, T. Tsuruma, H. Asanuma, T. Kanaseki, H. Ikeda, K. Kashiwagi, M. Okazaki, K. Sasaki, T. Sato, T. Ohmura, F. Hata, K. Yamaguchi, K. Hirata, N. Sato, A potent immunogenic general cancer vaccine that targets survivin, an inhibitor of apoptosis proteins, Clin. Cancer Res. 11(4), 1474–82 (2005).PubMedCrossRefGoogle Scholar
  60. 60.
    S.M. Schmidt, K. Schag, M.R. Muller, M.M. Weck, S. Appel, L. Kanz, F. Grunebach, P. Brossart, Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells, Blood 102, 571–576 (2003).PubMedCrossRefGoogle Scholar
  61. 61.
    K. Otto, M.H. Andersen, A. Eggert, P. Keikavoussi, L.O. Pedersen, J.C. Rath, M. Bock, E.B. Brocker, P.T. Straten, E. Kampgen, J.C. Becker, Lack of toxicity of therapy-induced T cell responses against the universal tumour antigen survivin, Vaccine 23(7), 884–9 (2005).PubMedCrossRefGoogle Scholar
  62. 62.
    T. Tsuruma, F. Hata, T. Torigoe, T. Furuhata, S. Idenoue, T. Kurotaki, M. Yamamoto, A. Yagihashi, T. Ohmura, K. Yamaguchi, T. Katsuramaki, T. Yasoshima, K. Sasaki, Y. Mizushima, H. Minamida, H. Kimura, M. Akiyama, Y. Hirohashi, H. Asanuma, Y. Tamura, K. Shimozawa, N. Sato, K. Hirata, Phase I clinical study of anti-apoptosis protein, survivin-derived peptide vaccine therapy for patients with advanced or recurrent colorectal cancer, J. Transl. Med. 2(1), 19 (2004).PubMedCrossRefGoogle Scholar
  63. 63.
    S.J. Gendler, A.P.Spicer, Epithelial mucin genes, Annu. Rev. Physiol. 57, 607–634 (1995).PubMedCrossRefGoogle Scholar
  64. 64.
    S. Gendler, J. Taylor-Papadimitriou, T. Duhig, J. Rothbard, J.Burchell, Highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats, J. Biol. Chem. 263, 12820–12823 (1988).PubMedGoogle Scholar
  65. 65.
    T. Takahashi, Y. Makiguchi, Y. Hinoda, H. Kakiuchi, N. Nakagawa, K. Imai, A. Yachi, Expression of MUC1 on myeloma cells and induction of HLA-unrestricted CTL against MUC1 from a multiple myeloma patient, J. Immunol. 153, 2102–2109 (1994).PubMedGoogle Scholar
  66. 66.
    P. Brossart, K.S. Heinrich, G. Stuhler, L. Behnke, V.L. Reichardt, S. Stevanovic, A. Muhm, H.G. Rammensee, L. Kanz, W. Brugger, Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies, Blood 93,4309–4317 (1999).PubMedGoogle Scholar
  67. 67.
    V. Apostolopoulos, V. Karanikas, J.S. Haurum, I.F. McKenzie, Induction of HLA-A2-restricted CTLs to the mucin 1 human breast cancer antigen, J. Immunol. 159, 5211–5218 (1997).PubMedGoogle Scholar
  68. 68.
    O.J. Finn, K.R. Jerome, R.A. Henderson, G. Pecher, N. Domenech, J. Magarian-Blander, S.M. Barratt-Boyes, MUC-1 epithelial tumor mucin-based immunity and cancer vaccines, Immunol. Rev. 145, 61–89 (1995).PubMedCrossRefGoogle Scholar
  69. 69.
    J. Wierecky, M. Mueller, P. Brossart. Dendritic cell-based cancer immunotherapy targeting MUC-1, Cancer Immunol. Immunother. 55, 63–7 (2006).PubMedCrossRefGoogle Scholar
  70. 70.
    I. Saeterdal, J. Bjorheim, K. Lislerud, M.K. Gjertsen, I.K. Bukholm, O.C. Olsen, J.M. Nesland, J.A. Eriksen, M. Moller, A. Lindblom, G. Gaudernack, Frameshift-mutation-derived peptides as tumor-specific antigens in inherited and spontaneous colorectal cancer, Proc. Natl. Acad. Sci. USA 98, 13255–60 (2001).PubMedCrossRefGoogle Scholar
  71. 71.
    I. Saeterdal, M.K. Gjertsen, P. Straten, J.A. Eriksen, G. Gaudernack, A TGF betaRII frameshift-mutation-derived CTL epitope recognised by HLA-A2-restricted CD8+ T cells, Cancer Immunol. Immunother. 50, 469–76 (2001).PubMedCrossRefGoogle Scholar
  72. 72.
    W.M. Wagner, Q. Ouyang, G. Pawelec, The abl/bcr gene product as a novel leukemia-specific antigen: peptides spanning the fusion region of abl/bcr can be recognized by both CD4+ and CD8+ T lymphocytes, Cancer Immunol. Immunother. 52, 89 (2003).PubMedGoogle Scholar
  73. 73.
    G.J. ten Bosch, J.H. Kessler, A.M. Joosten, A.A. Bres-Vloemans, A. Geluk, B.C. Godthelp, J. van Bergen, C.J. Melief, O.C. Leeksma, A BCR-ABL oncoprotein p210b2a2 fusion region sequence is recognized by HLA-DR2a restricted cytotoxic T lymphocytes and presented by HLA-DR matched cells transfected with an Ii(b2a2) construct, Blood 94, 1038 (1999).PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Michael A. Morse
    • 1
  • Timothy M. Clay
    • 2
  • H Kim Lyerly
    • 3
  1. 1.Associate Professor of Medicine Duke University Medical CenterNew YorkUSA
  2. 2.Associate Professor of Surgery Duke University Medical CenterNew YorkUSA
  3. 3.George Barth Geller Professor of Research in Cancer DirectorDuke Comprehensive Cancer CenterNew YorkUSA

Personalised recommendations