Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coley W. Treatment of inoperable malignant tumors with the toxins of erysipelas and the bacillus prodigiosus. Trans Am Surg Assoc 1894; 12:183.

    Google Scholar 

  2. Coley W. The therapeutic value of the mixed toxins of the streptococcus of erysipelas and the bacillus prodigiousus. Am J Med Sci 1896; 112:251–281.

    Article  Google Scholar 

  3. Gross L. Intradermal immunization of C3H mice against sarcoma that originated in an animal of the same line. Cancer Res 1943; 3:326–33.

    Google Scholar 

  4. Riker A, Cormier J, Panelli M, et al. Immune selection following antigen specific immunotherapy of melanoma. Surgery 1999; 126(2):112–20.

    PubMed  CAS  Google Scholar 

  5. Dudley M, Wunderlich J, Yang J, et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J Clin Oncol 2005; 23(10):2346–57.

    Article  PubMed  CAS  Google Scholar 

  6. Reynolds S, Celis E, Sette A, et al. HLA-independent heterogeneity of CD8+ T cell responses to MAGE-3, Melan-A/MART-1, gp100, tyrosinase, MC1R, and TRP-2 in vaccine-treated melanoma patients. J Immunol 1998; 161:6970–6976.

    PubMed  CAS  Google Scholar 

  7. Berd D. M-Vax: an autologous, hapten-modified vaccine for human cancer. Expert Opin Biol Ther 2002; 2(3):335–42.

    Article  PubMed  CAS  Google Scholar 

  8. Dillman R, Weimann M, Nayak S, et al. Interferon-gamma or granulocyte-macrophage colony-stimulating factor adminstered as adjuvants with a vaccine of irradiated autologous tumor cells from short-term cell line cultures: a randomized phase 2 trial of the cancer biotherapy research group. J Immunother 2003; 26(4):367–73.

    Article  PubMed  CAS  Google Scholar 

  9. Mazzaferrro V, Coppa J, Carrabba M, et al. Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 2003; 9(9):3235–45.

    Google Scholar 

  10. Coca A, Dorrance G, Lebredo M. Vaccination in cancer: a report of the results of vaccination therapy as applied to seventy-nine cases of human cancer. Journal of Immunology and Experimental Therapeutics 1912; 13:543–51.

    CAS  Google Scholar 

  11. Berd D, Sato T, Maguire H, et al. Immunopharmacologic analysis of an autologous, hapten-modified human melanoma vaccine. J Clin Oncol 2004; 22(3):403–15.

    Article  PubMed  CAS  Google Scholar 

  12. Morton D, Barth A. Vaccine therapy for malignant melanoma. CA Cancer J Clin 1996; 46(4):225–44.

    PubMed  CAS  Google Scholar 

  13. Ackerman A, Cresswell P. Cellular mechanisms governing cross-presentation of exogenous antigens. Nat Immunol 20004; 5(7):678–84.

    Article  CAS  Google Scholar 

  14. Mitchell M. Perspective on allogeneic melanoma lysates in active specific immunotherapy. Semin Oncol 1998; 25(6):623–35.

    PubMed  CAS  Google Scholar 

  15. Marcove R, Southam C, Levin A, al e. A clinical trial of autogenous vaccine in osteogenic sarcoma in patients under the age of twenty-five. In Mathe G, Weiner R, eds. Investigation and stimulation of immunity in cancer patients. New York: Springer-Verlag, 1974.

    Google Scholar 

  16. Lindenmann J, Klein P. Viral oncolysis: increased immunogenicity of host cell antigen associated with influenza virus. J Exp Med 1967; 126:93.

    Article  PubMed  CAS  Google Scholar 

  17. Bystryn J. Shedding and degradation of cell-surface macromolecules and tumor-associated antigens by human melanoma. In Reisfeld R, Ferrone S, eds. Melanoma antigens and antibodies. New York: Plenum Press, 1982. pp. 37–52.

    Google Scholar 

  18. Lore K, Betts M, Brenchley J, et al. Toll-like recpetor ligands modulate dendritic cells to augment Cytomegalovirus- and HIV-1-specific T cell responses. J Immunol 2003; 171:4320–8.

    PubMed  CAS  Google Scholar 

  19. Dockrell D, Kinghorn G. Imiquimod and resiquimod as novel immunomodulators. J Antimicrob Chemother 2001; 48:751–5.

    Article  PubMed  CAS  Google Scholar 

  20. Pulendran B, Bancheereau J, Burkeholder S, et al. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J Immunol 2000; 165(1):566–72.

    PubMed  CAS  Google Scholar 

  21. Steinman R, Cohn Z. Identification of a novel cell type in peripheral lymphoid organs of mice: Morphology, quantitation, tissue distribution. J Exp Med 1973; 137(5):1142–62.

    Article  PubMed  CAS  Google Scholar 

  22. Czerniecki B, Cohen P, Faries M, et al. Diverse functional activity of CD83+ monocyte-derived dendritic cells and the implications for cancer vaccines. Critical Rev Immunol 2001; 21(1–3):157–78.

    CAS  Google Scholar 

  23. Faries M, Bedrosian I, Xu S, et al. Calcium signaling inhibits interleukin-12 production and activates CD83+ dendritic cells that induce Th2 cell development. Blood 2001; 98:2489–2497.

    Article  PubMed  CAS  Google Scholar 

  24. Bedrosian I, Mick R, Xu S, et al. Intranodal administration of peptide-pulsed mature dendritic cell vaccines results in superior CD8+ T-cell function in melanoma patients. J Clin Oncol 2003; 21(20):3826–3835.

    Article  PubMed  CAS  Google Scholar 

  25. Nestle F, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide or tumor lysate-pulsed dendritic cells. Nat Med 1998; 4(3):269–70.

    Article  Google Scholar 

  26. Dranoff G, Mulligan R. Gene transfer as cancer therapy. Adv Immunol 1995; 58(417–54).

    PubMed  CAS  Google Scholar 

  27. Mascarenhas L, Stripecke R, Case S, et al. Gene delivery to human B-precursor acute lymphoblastic leukemia cells. Blood 1998; 92(10):3537–45.

    PubMed  CAS  Google Scholar 

  28. Micka B, Trojaneck B, Niemitz S, et al. Comparison of non-viral transfection methods in melanoma primary cell cultures. Cytokine 2000; 12(6):828–33.

    Article  PubMed  CAS  Google Scholar 

  29. Lundqvist A, Noffz G, Pavlenko M, et al. Nonviral and viral gene transfer into different subsets of human dendritic cells yield comparable efficiency of transfection. J Immunother 2003; 25(6):445–54.

    Article  Google Scholar 

  30. Karre K, Ljunggren H, Piontek G, Kiessling R. Selective rejection of h-2-deficient lymphoma variants suggests alternative defense strategy. Nature 1986; 391(6055):675–8.

    Article  Google Scholar 

  31. Huang A, Bruce A, Pardoll D, Levitsky H. Does B7–1 expression confer antigen-presenting cell capacity to tumors in vivo? J Exp Med 1996; 183(3):769–76.

    Article  PubMed  CAS  Google Scholar 

  32. Horig H, Lee D, Conkright W, et al. Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule. Cancer Immunol Immunother 2000; 49(9):504–14.

    Article  PubMed  CAS  Google Scholar 

  33. vonMehren M, Arlen P, Tsang K, et al. Pilot study of a dual gene recombinant avipox vaccine containing both carcinoembryonic antigen (CEA) and B7.1 transgenes in patients with recurrent CEA-expressing adneocarcinomas. Clin Cancer Res 2000; 6(6):2219–28.

    CAS  Google Scholar 

  34. Belli F, Arienti F, Sule-Suso J, et al. Active immunization of metastatic melanoma patients with interleukin-2-transduced allogeneic melanoma cells: evaluation of efficacy and tolerability. Cancer Immunol Immunother 1997; 44(4):197–203.

    Article  PubMed  CAS  Google Scholar 

  35. Osanto S, Brouwenstyn N, Vaessen N, et al. Immunization with interleukin-2 transfected melanoma cells. A phase I-II study in patients with metastatic melanoma. Hum Gene Ther 1993; 4(3):323–30.

    PubMed  CAS  Google Scholar 

  36. Schreiber S, Kampgen E, wagner E, et al. Immunotherapy of metastatic malignant melanoma by a vaccine consisting of autologous interleukin-2-transfected cancer cells: outcome of a phase I study. Hum Gene Ther 1999; 10(6):983–93.

    Article  PubMed  CAS  Google Scholar 

  37. Arienti F, Belli F, Napolitano F, et al. Vaccination of melanoma patients with interleukin 4 gene-transduced allogeneic melanoma cells. Hum Gene Ther 2000; 10(18):2907–16.

    Article  Google Scholar 

  38. Suminami Y, Elder E, Lotze M, Whiteside T. In situ interleukin-4 gene expression in cancer patients treated with genetically modified tumor vaccine. J Immunother Emphasis Tumor Immunol 1995; 17(4):238–48.

    PubMed  CAS  Google Scholar 

  39. Maio M, Fonsatti E, Lamaj E, et al. Vaccination of stage IV patients with allogeneic IL-4- or IL-2-transduced melanoma cells generates functional antibodies against vaccinating and autologous melanoma cells. Cancer Immunol Immunother 2002; 51(1):9–14.

    Article  PubMed  CAS  Google Scholar 

  40. Mackiewicz A, Gorny A, Laciak M, et al. Gene therapy of human melanoma. Immunization of patients with autologous tumor cells secreting interleukin-6 and soluable interleukin-6 receptor. Hum Gene Ther 1995; 6:805–11.

    Article  PubMed  CAS  Google Scholar 

  41. Moller P, Sun Y, Dorbic T, et al. Vaccination with IL-7 gene-modified autologous melanoma cells can enhance the anti-melanoma lytic activity in peripheral blood of patients with good clinical performance status: a phase I clinical study. Br J Cancer 1998; 77(11):1907–16.

    PubMed  CAS  Google Scholar 

  42. Sun Y, Jurgovsky K, Moller P, et al. Vaccination with IL-12 gene-modified autologous melanoma cells: preclinical results and a first clinical phase I study. Gene Ther 1998; 5(4):481–90.

    Article  PubMed  CAS  Google Scholar 

  43. Asada H, Kishida T, Hirai H, et al. Significant antitumor effects obtained by autologous tumor cell vaccine engineered to secrete interleukin (IL)-12 and IL-18 by means of the EBV/lipoplex. Mol Ther 2002; 5(5):609–16.

    Article  PubMed  CAS  Google Scholar 

  44. Abdel-Wahab Z, Weltz C, Hester D, et al. A phase I clinical trial of immunotherapy with interferon-gamma gene-modified autologous melnaoma cells: monitoring the humoral immune response. Cancer 1997; 80(3):401–12.

    Article  PubMed  CAS  Google Scholar 

  45. Ellem K, O’Rourke M, Johnson G, et al. A case report: immune responses and clinical course of the first human use of granulocyte/macrophage-colony-stimulating factor-transduced autologous melanoma cells for immunotherapy. Cancer Immunol Immunother 1997; 44(1):10–20.

    Article  PubMed  CAS  Google Scholar 

  46. Soiffer R, Hodi F, Haluska F, et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 2003; 21(17):3343–50.

    Article  PubMed  CAS  Google Scholar 

  47. Salgia R, Lynch T, Skarin A, et al. Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J Clin Oncol 2003; 21(4):624–30.

    Article  PubMed  Google Scholar 

  48. Palmer K, Moore J, Everard M, et al. Gene therapy with autologous, interleukin 2-secreting tumor cells in patients with malignant melanoma. Hum Gene Ther 1999; 10(8):1261–8.

    Article  PubMed  CAS  Google Scholar 

  49. Hirschowitz E, Foody T, Kryscio R, et al. Autologous dendritic cell vaccines for non-small-cell lung cancer. J Clin Oncol 2004; 22(14):2808–15.

    Article  PubMed  Google Scholar 

  50. Ip W, Lau Y. Distinct maturation of, but not migration between, human monocyte-derived dendritic cells upon ingestion of apoptotic cells of early or late phases. J Immunol 2004; 173(1):189–96.

    PubMed  CAS  Google Scholar 

  51. Kacani L, Wurm M, Schwentner I, et al. Maturation of dendritic cells in the presence of living, apoptotic and necrotic tumour cells derived from squamous cell carcinoma of head and neck. Oral Oncol 2005; 41(1):17–24.

    Article  PubMed  Google Scholar 

  52. Chen Z, Moyana T, Saxena A, et al. Efficient antitumor immunity derived from maturation of dendritic cells that had phagocytosed apoptotic/necrotic tumor cells. Int J Cancer 2001; 93(4):539–48.

    Article  PubMed  CAS  Google Scholar 

  53. Pietra G, Mortarini R, Parmiani G, Anichini A. Phases of apoptosis of melanoma cells, but not of normal melanocytes differently affect maturation of myeloid dendritic cells. Cancer Res 2001; 61(22):8218–26.

    PubMed  CAS  Google Scholar 

  54. Hirao M, Onai N, Hiroishi K, et al. CC chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells: critical role in migration from the tumor site to draining lymph nodes. Cancer Res 2000; 60(8):2209–17.

    PubMed  CAS  Google Scholar 

  55. Salio M, Cerundolo V, Lanzavecchia A. Dendritic cell maturation is induced by mycoplasma infection but not by necrotic cells. Eur J Immunol 2000; 30(2):705–8.

    Article  PubMed  CAS  Google Scholar 

  56. Dalgaard J, Beckstrom K, Jahnsen F, Brinchmann J. Differential capability for phagocytosis of apoptotic and necrotic leukemia cells by human peripheral blood dendritic cells subsets. J Leukoc Biol 2005; Epub ahead of print.

    Google Scholar 

  57. Krause S, Neumann C, Soruri A, et al. The treatment of patients with disseminated malignant melanoma by vaccination with autologous cell hybrids of tumor cells and dendritic cells. J Immunother 2002; 25(5):421–8.

    Article  PubMed  CAS  Google Scholar 

  58. Kikuchi T, Akasaki Y, Irie M, et al. Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol Immunother 2001; 50(7):337–44.

    Article  PubMed  CAS  Google Scholar 

  59. Parkhurst M, DePan C, Riley J, et al. Hybrids of dendritic cells and tumor cells generated by electrofusion simultaneously present immunodominant epitopes from multiple human tumor-associated antigens in the context of MHC class I and class II molecules. J Immunol 2003; 170(10):5317–25.

    PubMed  CAS  Google Scholar 

  60. Kuriyama H, Shimizu K, Lee W, et al. Therapeutic vaccine generated by electrofusion of dendritic cells and tumour cells. Dev Biol 2004; 116:169–78.

    CAS  Google Scholar 

  61. Avigan D, Vasir B, Gong J, et al. Fusion cell vaccination of patients with metastatic breast and renal cell cancer induces immunological and clinical responses. Clin Cancer Res 2004; 10(14):4699–708.

    Article  PubMed  CAS  Google Scholar 

  62. Trevor K, Cover C, Ruiz Y, et al. Generation of dendritic cell-tumor cell hybrids by electrofusion for clinical vaccine application. Cancer Immunol Immunother 2004; 53(8):705–14.

    Article  PubMed  Google Scholar 

  63. Shimizu K, Kuriyama H, Kjaergaard J, et al. Comparative analysis of antigen loading strategies of dendritic cells for tumor immunotherapy. J Immunother 2004; 27(4):265–72.

    Article  PubMed  CAS  Google Scholar 

  64. Faries M, Morton D. Melanoma: Is immunotherapy of benefit? Advances in Surgery 2003; 37:139–169.

    PubMed  Google Scholar 

  65. Morton DL, Hsueh EC, Essner R, et al. Prolonged survival of patients receiving active immunotherapy with Canvaxin therapeutic polyvalent vaccine after complete resection of melanoma metastatic to regional lymph nodes. Ann Surg 2002; 236: 438–48.

    Article  PubMed  Google Scholar 

  66. Vermorken J, Claessen A, vanTinteren H, et al. Active specific immunotherapy for stage II and stage III human colon cancer: a randomised trial. Lancet 1999; 353(9150):345–50.

    Article  PubMed  CAS  Google Scholar 

  67. Harris J, Ryan L, Hoover H, et al. Adjuvant active specific immunotherapy for stage II and III colon cancer with an autologous tumor cell vaccine: Eastern Cooperative Oncology Group study E5283. J Clin Oncol 2000; 18(1):148–57.

    PubMed  CAS  Google Scholar 

  68. Adler A, Gillon G, Lurie H, et al. Active specific immunotherapy of renal cell carcinoma patients: a prospective randomized study of hormono-immuno-versus hormonotherapy. Preliminary report of immunological and clinical aspects. J Biol Response Mod 1987; 6(6):610–24.

    PubMed  CAS  Google Scholar 

  69. Lytle G, McGee J, Yamanashi W, et al. Five-year survival in breast cancer treated with adjuvant immunotherapy. Am J Surg 1994; 168(1):19–21.

    Article  PubMed  CAS  Google Scholar 

  70. Hollinshead A. Active specific immunotherapy and immunochemotherapy in the treatment of lung and colon cancer. Semin Surg Oncol 1991; 7(4):199–210.

    Article  PubMed  CAS  Google Scholar 

  71. Hernando J, Park T, Kubler K, et al. Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynecologic malignancies: clinical and immunological evaluation of a phase I trial. Cancer Immunol Immunother 2002; 51(1):45–52.

    Article  PubMed  CAS  Google Scholar 

  72. Kaminski E, Goddard R, Prentice A. Dendritic cells and their potential therapeutic role in haemoatological malignancy. Leuk Lymphoma 2003; 44(10):1657–66.

    Article  PubMed  CAS  Google Scholar 

  73. Alth G, Denck H, Fischer M, et al. Aspects of the immunologic treatment of lung cancer. Cancer Chemother Rep [3] 1973; 4(2):271–4.

    CAS  Google Scholar 

  74. Geiger J, Hutchinson R, Hohenkirk L, et al. Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res 2001; 61(23):8513–9.

    PubMed  CAS  Google Scholar 

  75. Stift A, Sachet M, Yagubian R, et al. Dendritic cell vaccination in medullary thyroid carcinoma. Clin Cancer Res 2004; 10(9):2944–53.

    Article  PubMed  CAS  Google Scholar 

  76. Wallack M, Sivanandham M, Balch C, et al. Surgical adjuvant active specific immunotherapy for patients with stage III melanoma: the final analysis of data from a phase III, randomized, double-blind, multicenter vaccinia melanoma oncolysate trial. J Am Coll Surg 1998; 187(1):69–77.

    Article  PubMed  CAS  Google Scholar 

  77. Hersey P, Coates A, McCarthy W, et al. Adjuvant immunotherapy of patients with high-risk melanoma using vaccinia viral lysates of melanoma: results of a randomized trial. J Clin Oncol 2002; 20:4148–4190.

    Article  CAS  Google Scholar 

  78. Sondak V, Liu P, Tuthill R, et al. Adjuvant immunotherapy or resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: overall results of a randomized trial of the Southwest Oncology Group. J Clin Oncol 2002; 20:2058–2066.

    Article  PubMed  CAS  Google Scholar 

  79. Vaishampayan U, Abrams J, Darrah D, et al. Active immunotherapy of metastatic melanoma with allogeneic melanoma lysates and interferon alpha. Clin Cancer Res 2002; 8(12):3696–701.

    PubMed  CAS  Google Scholar 

  80. Sosman J, Unger J, Liu P, et al. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: Impact of HLA class I antigen epression on outcome. J Clin Oncol 2002; 20(8):2067–2075.

    Article  PubMed  CAS  Google Scholar 

  81. Bystryn J, Zeleniuch-Jacquotte A, Oratz R, et al. Double-blind trial of a polyvalent, shed-antigen melanoma vaccine. Clin Cancer Res 2001; 7:1882.

    PubMed  CAS  Google Scholar 

  82. Hsueh E, Essner R, Foshag L, et al. Active immunotherapy by reinduction with a polyvalent allogeneic cell vaccine correlates with improved survival in recurrent metastatic melanoma. Ann Surg Oncol 2002; 9(5):486–92.

    Article  PubMed  Google Scholar 

  83. Hsueh E, Famatiga E, Gupta R, et al. Enhancement of complement-dependent cytotoxicity by polyvalent melanoma cell vaccine (CancerVax): correlation with survival. Ann Surg Oncol 1998; 5(7):595–602.

    Article  PubMed  CAS  Google Scholar 

  84. Keiholz U, Weber J, Finke J, et al. Immunologic monitoring of cancer vaccine therapy: results of a workshop sponsored by the Society for Biological Therapy. J Immunother 2002; 25(2):97–138.

    Article  Google Scholar 

  85. Hsueh EC, Gupta RK, Qi K, et al. Correlation of specific immune responses with survival in melanoma patients with distant metastases receiving polyvalent melanoma cell vaccine. J Clin Oncol 1998; 16: 2913–20.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Faries, M.B., Morton, D.L. (2007). Whole Cell Vaccines. In: Kaufman, H.L., Wolchok, J.D. (eds) General Principles of Tumor Immunotherapy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6087-8_12

Download citation

Publish with us

Policies and ethics