Accurate Evaluation of the S-Matrix for Multi-Channel Analytic and Non-Analytic Potentials in Complex L2 Bases

  • H.A. Yamani
  • M.S. Abdelmonem


We describe an efficient and accurate scheme to compute the S-matrix elements for a given multi-channel analytic and non-analytic potentials in complex-scaled orthonormal Laguerre or oscillator bases using the J-matrix method. As examples of the utilization of the scheme, we evaluate the cross section of two-channel square wells in an oscillator basis and find the resonance position for the same potential using the Laguerre basis. We also find resonance positions of a two-channel analytic potential for several angular momenta ℓ using both bases. Additionally, we evaluate the effect of including the Coulomb term (z/r) when employing the Laguerre basis.


Petroleum Assure Reso 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review of this method see, Reinhardt W P 1982 Ann. Rev. Phys. Chem. 33, 223Google Scholar
  2. 2.
    Rescigno T N and Reinhardt W P 1973 Phys. Rev. A8, 2828ADSMathSciNetGoogle Scholar
  3. 3.
    Rescigno T N and McCurdy C W 1986 Phys. Rev. A34 1882Google Scholar
  4. 4.
    Yamani H A and Abdelmonem M S 1996 J. Phys. A: Math. Gen. 29, 6991Google Scholar
  5. 5.
    Arickx F, Broeckhove J, Van Leuven P, Vasilevsky V, and Filippov 1994 Am. J. Phys. 62, 362CrossRefADSGoogle Scholar
  6. 6.
    Alhaidari A D, Bahlouli H, Abdelmonem M S, Al-Ameen F, and Al-Abdulaal T (2007) Phys. Lett. A 364, 372CrossRefADSMathSciNetMATHGoogle Scholar
  7. 7.
    Igashov S Yu, “Oscillator basis in the J-matrix method: convergence of expansions, asymptotics of expansion coefficients and boundary conditions”, Part II, Chapter 1, this volumeGoogle Scholar
  8. 8.
    Magnus W, Oberhettinger F, and Soni R P 1966, Formulas and Theorems for the Special Functions of Mathematical Physics (New York: Springer-Verlag)Google Scholar
  9. 9.
    Yamani H A and Abdelmonem M S 1997 J. Phys. B: At. Mol. Opt. Phys. 30, 1633CrossRefADSGoogle Scholar
  10. 10.
    Akhiezer N I 1965, The Classical Moment Problem (Einburgh: Oliver and Boyd)Google Scholar
  11. 11.
    Szego G 1939, Orthogonal Polynomials (New York: American Mathematical Society)Google Scholar
  12. 12.
    Krylov V I 1962, Approximate Calculation of Integrals (New York: The Macmillan Company)Google Scholar
  13. 13.
    Newton R G 1966, Scattering Theory of Waves and Particles (New York: McGraw-Hill), p. 543Google Scholar
  14. 14.
    Noro T and Taylor H S 1980 J. phys. B13, L377ADSGoogle Scholar
  15. 15.
    Mandelshtam V.A. Ravuri T. R. and Taylor H. S. 1993 Phys. Rev. Lett. 70, 1932CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • H.A. Yamani
    • 1
  • M.S. Abdelmonem
  1. 1.Ministry of Commerce & IndustryRiyadh 11127Saudi Arabia

Personalised recommendations