Advertisement

The Modified J-Matrix Approach for Cluster Descriptions of Light Nuclei

  • F. Arickx
  • J. Broeckhove
  • A. Nesterov
  • V. Vasilevsky
  • W. Vanroose

Abstract

We present a fully microscopic three-cluster nuclear model for light nuclei on the basis of a J-Matrix approach. We apply the Modified J-Matrix method on 6He and 6Be for both scattering and reaction problems, analyse the Modified J-Matrix calculation, and compare the results to experimental data.

Keywords

Matrix Element Light Nucleus Matrix Approach Asymptotic Region Hyperspherical Harmonics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Vanroose , J. Broeckhove , and F. Arickx , “ Modified J -matrix method for scattering ,” Phys. Rev. Lett., vol. 88, p. 10404, Jan. 2002.Google Scholar
  2. 2.
    V. S. Vasilevsky and F. Arickx, “Algebraic model for quantum scattering: Reformulation, analysis, and numerical strategies,” Phys. Rev., vol. A55, pp. 265–286, 1997.CrossRefADSGoogle Scholar
  3. 3.
    J. Broeckhove , F. Arickx , W. Vanroose , and V. S. Vasilevsky , “ The modified J-matrix method for short range potentials ,” J. Phys. A Math. Gen., vol. 37, pp. 7769–7781, Aug. 2004.Google Scholar
  4. 4.
    G. F. Filippov and I. P. Okhrimenko, “Use of an oscillator basis for solving continuum problems,” Sov. J. Nucl. Phys., vol. 32, pp. 480–484, 1981.Google Scholar
  5. 5.
    G. F. Filippov, “On taking into account correct asymptotic behavior in oscillator-basis expansions,” Sov. J. Nucl. Phys., vol. 33, pp. 488–489, 1981.Google Scholar
  6. 6.
    G. F. Filippov, V. S. Vasilevsky, , and L. L. Chopovsky, “Generalized coherent states in nuclear-physics problems,” Sov. J. Part. Nucl., vol. 15, pp. 600–619, 1984.Google Scholar
  7. 7.
    G. F. Filippov, V. S. Vasilevsky, and L. L. Chopovsky, “Solution of problems in the microscopic theory of the nucleus using the technique of generalized coherent states,” Sov. J. Part. Nucl., vol. 16, pp. 153–177, 1985.Google Scholar
  8. 8.
    G. Filippov and Y. Lashko , “ Structure of light neutron-rich nuclei and nuclear reactions involving these nuclei ,” El. Chast. Atom. Yadra, vol. 36, no. 6, pp. 1373–1424, 2005.Google Scholar
  9. 9.
    G. F. Filippov , Y. A. Lashko , S. V. Korennov , and K. Katō , “ 6He + 6He clustering of 12Be in a microscopic algebraic approach ,” Few-Body Syst., vol. 34, pp. 209–235, 2004.Google Scholar
  10. 10.
    V. Vasilevsky, G. Filippov, F. Arickx, J. Broeckhove, and P. V. Leuven, “Coupling of collective states in the continuum: an application to 4He ,” J. Phys. G: Nucl. Phys., vol. G18, pp. 1227–1242, 1992.CrossRefADSGoogle Scholar
  11. 11.
    A. Sytcheva , F. Arickx , J. Broeckhove , and V. S. Vasilevsky , “ Monopole and quadrupole polarization effects on the α -particle description of 8 Be,” Phys. Rev. C, vol. 71, p. 044322, Apr. 2005.Google Scholar
  12. 12.
    A. Sytcheva , J. Broeckhove , F. Arickx , and V. S. Vasilevsky , “ Influence of monopole and quadrupole channels on the cluster continuum of the lightest p-shell nuclei ,” J. Phys. G: Nucl. Phys., vol. 32, pp. 2137–2155, Nov. 2006.Google Scholar
  13. 13.
    V. S. Vasilevsky, A. V. Nesterov, F. Arickx, and J. Broeckhove, “Algebraic model for scattering in three-s-cluster systems. I . T heoretical background,” Phys. Rev., vol. C63, p. 034606, 2001.CrossRefADSGoogle Scholar
  14. 14.
    V. S. Vasilevsky, A. V. Nesterov, F. Arickx, and J. Broeckhove, “Algebraic model for scattering in three-s-cluster systems. II . R esonances in three-cluster continuum of 6He and 6Be ,” Phys. Rev., vol. C63, p. 034607, 2001.CrossRefADSGoogle Scholar
  15. 15.
    V. Vasilevsky, F. Arickx, J. Broeckhove, and V. Romanov, “Theoretical analysis of resonance states in 4H , 4He and 4Li above three-cluster threshold,” Ukr. J. Phys., vol. 49, no. 11, pp. 1053–1059, 2004.Google Scholar
  16. 16.
    V. Vasilevsky, F. Arickx, J. Broeckhove, and T. Kovalenko, “ A microscopic model for cluster polarization, applied to the resonances of 7Be and the reaction 6Li<ft( p,3Heright) 4He ,” in Proceedings of the 24 International Workshop on Nuclear Theory, Rila Mountains, Bulgaria, June 20–25, 2005 (S. Dimitrova, ed.), pp. 232–246, Sofia, Bulgaria: Heron Press, 2005.Google Scholar
  17. 17.
    F. Arickx, J. Broeckhove, P. Hellinckx, V. Vasilevsky, and A. Nesterov, “ A three-cluster microscopic model for the 5H nucleus ,” in Proceedings of the 24 International Workshop on Nuclear Theory, Rila Mountains, Bulgaria, June 20–25, 2005 (S. Dimitrova, ed.), pp. 217–231, Sofia, Bulgaria: Heron Press, 2005.Google Scholar
  18. 18.
    V. S. Vasilevsky, A. V. Nesterov, F. Arickx, and P. V. Leuven, “Dynamics of α+N+N channel in 6He and 6Li ,” Preprint ITP-96-3E, p. 19, 1996.Google Scholar
  19. 19.
    V. S. Vasilevsky, A. V. Nesterov, F. Arickx, and P. V. Leuven, “Three-cluster model of six-nucleon system,” Phys. Atomic Nucl., vol. 60, pp. 343–349, 1997.ADSGoogle Scholar
  20. 20.
    Y. A. Simonov, Sov. J. Nucl. Phys., vol. 7, p. 722, 1968.Google Scholar
  21. 21.
    M. Fabre de la Ripelle , “Green function and scattering amplitudes in many-dimensional space,” Few-Body Syst., vol. 14, pp. 1–24, 1993.Google Scholar
  22. 22.
    V. Zhukov, B.V. Danilin, D.V. Fedorov, J.M. Bang, J.I. Thompson, and J.S. Vaagen, “Bound state properties of borromean halo nuclei: 6He and 11Li ,” Phys. Rep., vol. 231, pp. 151–199, 1993.CrossRefADSGoogle Scholar
  23. 23.
    F. Zernike and H. C. Brinkman, Proc. Kon. Acad. Wetensch., vol. 33, p. 3, 1935.Google Scholar
  24. 24.
    M. V. Zhukov , B. V. Danilin , D. V. Fedorov , J. S. Vaagen , F. A. Gareev , and J. Bang , “ Calculation of 11Li in the framework of a three-body model with simple central potentials ,” Phys. Lett. B, vol. 265, pp. 19–22, Aug. 1991.Google Scholar
  25. 25.
    L. V. Grigorenko , B. V. Danilin , V. D. Efros , N. B. Shul’gina , and M. V. Zhukov , “ Structure of the 8Li and 8B nuclei in an extended three-body model and astrophysical S17 factor ,” Phys. Rev. C, vol. 57, p. 2099, May 1998.Google Scholar
  26. 26.
    L. V. Grigorenko , R. C. Johnson , I. G. Mukha , I. J. Thompson , and M. V. Zhukov , “ Three-body decays of light nuclei: 6Be , 8Li , 9Be , 12O , 16Ne , and 17Ne ,” Eur. Phys. J. A, vol. 15, pp. 125–129, 2002.Google Scholar
  27. 27.
    M. V. Zhukov , D. V. Fedorov , B. V. Danilin , J. S. Vaagen , and J. M. Bang , “ 9Li and neutron momentum distributions in 11Li in a simplified three-body model ,” Phys. Rev. C, vol. 44, pp. 12–14, July 1991.Google Scholar
  28. 28.
    D. V. Fedorov , A. S. Jensen , and K. Riisager , “ Three-body halos: gross properties ,” Phys. Rev. C, vol. 49, pp. 201–212, Jan. 1994.Google Scholar
  29. 29.
    E. Garrido , D. V. Fedorov , and A. S. Jensen , “ Breakup reactions of 11Li within a three-body model ,” Phys. Rev. C, vol. 59, pp. 1272–1289, Mar. 1999.Google Scholar
  30. 30.
    I. F. Gutich, A. V. Nesterov, and I. P. Okhrimenko, “Study of tetraneutron continuum states,” Yad. Fiz., vol. 50, p. 19, 1989.Google Scholar
  31. 31.
    T.Ya. Mikhelashvili, Y. F. Smirnov, and A. M. Shirokov, “The continuous spectrum effect on monopole excitations of the 12C nucleus considered as a system of a particles,” Sov. J. Nucl. Phys., vol. 48, p. 969, 1988.Google Scholar
  32. 32.
    E. J. Heller and H. A. Yamani, “New L2 approach to quantum scattering: t heory,” Phys. Rev., vol. A9, pp. 1201–1208, 1974.CrossRefADSGoogle Scholar
  33. 33.
    H. A. Yamani and L. Fishman, “ J -matrix method: e xtensions to arbitrary angular momentum and to C oulomb scattering,” J. Math. Phys., vol. 16, pp. 410–420, 1975.CrossRefADSGoogle Scholar
  34. 34.
    Y. I. Nechaev and Y. F. Smirnov, “Solution of the scattering problem in the oscillator representation,” Sov. J. Nucl. Phys., vol. 35, pp. 808–811, 1982.MATHGoogle Scholar
  35. 35.
    A. Perelomov, “Coherent states for arbitrary Lie group,” Comment Math. Phys., vol. 26, pp. 222–236, 1972.MATHCrossRefADSMathSciNetGoogle Scholar
  36. 36.
    A. M. Perelomov, Generalized Coherent States and Their Applications. Berlin: Springer, 1987.MATHGoogle Scholar
  37. 37.
    F. Arickx, J. Broeckhove, P. V. Leuven, V. Vasilevsky, and G. Filippov, “The algebraic method for the quantum theory of scattering,” Am. J. Phys., vol. 62, pp. 362–370, 1994.CrossRefADSGoogle Scholar
  38. 38.
    D. V. Fedorov, A. S. Jensen, and K. Riisager, “Three-body halos: gross properties,” Phys. Rev., vol. C49, pp. 201–212, 1994.CrossRefADSGoogle Scholar
  39. 39.
    F. Calogero, Variable Phase Approach to Potential Scattering. New-York and London: Academic Press, 1967.MATHGoogle Scholar
  40. 40.
    V. V. Babikov, Phase Function Method in Quantum Mechanics. Moscow: Nauka, 1976.Google Scholar
  41. 41.
    B. V. Danilin, M. V. Zhukov, S. N. Ershov, F. A. Gareev, R. S. Kurmanov, J. S. Vaagen, and J. M. Bang, “Dynamical multicluster model for electroweak and charge-exchange reactions,” Phys. Rev., vol. C43, pp. 2835–2843, 1991.CrossRefADSGoogle Scholar
  42. 42.
    B. V. Danilin, T. Rogde, S. N. Ershov, H. Heiberg-Andersen, J. S. Vaagen, I. J. Thompson, and M. V. Zhukov, “New modes of halo excitation in ^6He nucleus,” Phys. Rev., vol. C55, pp. R577–R581, 1997.CrossRefADSGoogle Scholar
  43. 43.
    A. Csoto, “Three-body resonances in 6He , 6Li , and 6Be , and the soft dipole mode problem of neutron halo nuclei.,” Phys. Rev., vol. C49, pp. 3035–3041, 1994.CrossRefADSGoogle Scholar
  44. 44.
    N. Tanaka, Y. Suzuki, and K. Varga, “Exploration of resonances by analytical continuation in the coupling constant,” Phys. Rev., vol. C56, pp. 562–565, 1997.CrossRefADSGoogle Scholar
  45. 45.
    A. B. Volkov, “Equilibrum deformation calculation of the ground state energies of 1p shell nuclei,” Nucl. Phys., vol. 74, pp. 33–58, 1965.CrossRefADSGoogle Scholar
  46. 46.
    S. Aoyama , S. Mukai , K. Kato , and K. Ikeda , “ Binding mechanism of a neutron-rich nucleus 6He and its excited states ,” Prog. Theor. Phys., vol. 93, pp. 99–114, Jan. 1995.Google Scholar
  47. 47.
    S. Aoyama , S. Mukai , K. Kato , and K. Ikeda , “ Theoretical predictions of low-lying three-body resonance states in 6He ,” Prog. Theor. Phys., vol. 94, pp. 343–352, Sept. 1995.Google Scholar
  48. 48.
    F. Ajzenberg-Selove, “Energy levels of light nuclei A = 5–10,” Nucl. Phys., vol. A490, p. 1, 1988.CrossRefADSGoogle Scholar
  49. 49.
    D. R. Tilley , C. M. Cheves , J. L. Godwin , G. M. Hale , H. M. Hofmann , J. H. Kelley , C. G. Sheu , and H. R. Weller , “ Energy levels of light nuclei A =5, 6, 7 ,” Nucl. Phys. A, vol. 708, pp. 3–163, Sept. 2002.Google Scholar
  50. 50.
    V.S. Vasilevsky and I.Yu. Rybkin, “Astrophysical S factor of the reactions t(t, 2n)α and 3He(3He, 2p)α ,” Sov. J. Nucl. Phys., vol. 50, pp. 411–415, 1989.Google Scholar
  51. 51.
    Y. S. K. Varga and R. G. Lovas, “Microscopic multicluster description of neutron-halo nuclei with a stochastic variational method,” Nucl. Phys, vol. A571, pp. 447–466, 1994.ADSGoogle Scholar
  52. 52.
    S. Typel, G. Bluge, K. Langanke, and W. A. Fowler, “Microscopic study of the low-energy ^3He(^3He,2p)^4He and ^3H(^3H,2n)^4He fusion cross sections,” Z. Phys., vol. A339, p. 249, 1991.ADSGoogle Scholar
  53. 53.
    P. Descouvemont, “Microscopic analysis of the 3He(3He,2p)4He and 3H4He reactions in a three-cluster model,” Phys. Rev., vol. C50, pp. 2635–2638, 1994.CrossRefADSGoogle Scholar
  54. 54.
    A. Csoto and K. Langanke, “Large-space cluster model calculations for the 3He(3He,2p)4He and 3H(3H,2n)4He reactions,” Nucl. Phys., vol. A646, p. 387, 1999.CrossRefADSGoogle Scholar
  55. 55.
    K. Varga and Y. Suzuki, “Precise solution of few body problems with stochastic variational method on correlated gaussian basis,” Phys. Rev., vol. C52, pp. 2885–2905, 1995.CrossRefADSGoogle Scholar
  56. 56.
    R. F. Barrett , B. A. Robson , and W. Tobocman , “ Calculable methods for many-body scattering ,” Rev. Mod. Phys., vol. 55, pp. 155–243, Jan. 1983.Google Scholar
  57. 57.
    L. D. Faddeev and S. P. Merkuriev, Quantum Scattering Theory for Several Particle Systems. Dordrecht, Boston, London: Kluwer Academic Publishers, 1993.MATHGoogle Scholar
  58. 58.
    Z. Papp, I. N. Filikhin, and S. L. Yakovlev, “Integral equations for three-body C oulombic resonances,” Few Body Syst. Suppl., vol. 99, p. 1, 1999.Google Scholar
  59. 59.
    V. I. Serov, S. N. Abramovich, and L. A. Morkin, “Total cross section measurement for the reaction T(t, 2n)^4He ,” Sov. J. At. Energy, vol. 42, p. 66, 1977.CrossRefGoogle Scholar
  60. 60.
    A.M. Govorov, L. Ka-Yeng, G. M. Osetinskii, V. I. Salatskii, and I. V. Sizov Sov. Phys. JETP, vol. 15, p. 266, 1962.Google Scholar
  61. 61.
    R. E. Brown and N. Jarmie, “Hydrogen fusion-energy reactions,” Radiat. Eff., vol. 92, p. 45, 1986.CrossRefGoogle Scholar
  62. 62.
    H. M. Agnew, W. T. Leland, H. V. Argo, R. W. Crews, A. H. Hemmendinger, W. E. Scott, and R. F. Taschek, “Measurement of the cross section for the reaction T + T → He4 + 2n + 11.4 MeV ,” Phys. Rev., vol. 84, pp. 862–863, 1951.CrossRefADSGoogle Scholar
  63. 63.
    A. Krauss, H. W. Becker, H. P. Trautvetter, and C. Rolfs, “Astrophysical S(E) factor of 3He(3He,2p)4He at solar energies,” Nucl. Phys., vol. A467, pp. 273–290, 1987.CrossRefADSGoogle Scholar
  64. 64.
    R. Bonetti , C. Broggini , L. Campajola , P. Corvisiero , A. D’Alessandro , M. Dessalvi , A. D’Onofrio , A. Fubini , G. Gervino , L. Gialanella , U. Greife , A. Guglielmetti , C. Gustavino , G. Imbriani , M. Junker , P. Prati , V. Roca , C. Rolfs , M. Romano , F. Schuemann , F. Strieder , F. Terrasi , H. P. Trautvetter , and S. Zavatarelli , “ First measurement of the 3He<ft( 3He,2pright) 4He cross section down to the lower edge of the solar gamow peak ,” Phys. Rev. Lett., vol. 82, pp. 5205–5208, June 1999.Google Scholar
  65. 65.
    M. J. The LUNA Collaboration, A. D’Alessandro, S. Zavatarelli, C. Arpesella, E. Bellotti, C. Broggini, P. Corvisiero, G. Fiorentini, A. Fubini, and G. Gervino, “The cross section of 3He<ft( 3He,2pright) 4He measured at solar energies,” Phys. Rev., vol. C57, pp. 2700–2710, 1998.ADSGoogle Scholar
  66. 66.
    M. R. Dwarakanath and H. Winkler, “ ^3He(^3He,2p)^4He total cross-section measurements below the C oulomb barrier,” Phys. Rev., vol. C4, pp. 1532–1540, 1971.CrossRefADSGoogle Scholar
  67. 67.
    C. Arpesella et al., “The cross section of 3He(3He,2p)4He measured at solar energies,” Phys. Rev., vol. C57, pp. 2700–2710, 1998.ADSGoogle Scholar
  68. 68.
    R. Bonetti et al., “First measurement of the 3He+3He → 4He+2p cross section down to the lower edge of the solar gamow peak,” Phys. Rev. Lett., vol. 82, pp. 5205–5208, 1999.CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • F. Arickx
    • 1
  • J. Broeckhove
  • A. Nesterov
  • V. Vasilevsky
  • W. Vanroose
  1. 1.University of Antwerp, Group Computational Modeling and ProgrammingAntwerpBelgium

Personalised recommendations