Advertisement

Molecular Detection in Integrated Pest and Disease Management

  • M.M. Finetti Sialer
  • L. Rosso
Part of the Integrated Management of Plants Pests and Diseases book series (IMPD, volume 1)

Abstract

The basic principles of detection applied to IPM of plant pests and diseases are described, including immunodetection, monoclonal antibodies, DNA-based detection procedures and molecular fluorescent probes. Applications in disease and pest management are revised, in reference to field detection of plant pathogens, detection in vectors and pathogens identification from soil through DNA extraction and identification. The role of detection in quarantine of invasive species, pests and diseases epidemiology and identification of biological antagonists, including parasitoids and biological control agents, is revised. Finally, the application of molecular markers in IPM strategies based on plant resistance is discussed.

Keywords

Quantitative Trait Locus Biological Control Agent Environmental Microbiology Fusarium Head Blight Resistance Tomato Spotted Wilt Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agustì, N., Bourguet, D., Spataro, T., Delos, M., Eychenne, N., Folcher, L., & Arditi, R. (2005). Detection, identification and geographical distribution of European corn borer larval parasitoids using molecular markers Molecular Ecology, 14, 3267–3274.PubMedGoogle Scholar
  2. Altschul, W., Miller, G. W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.PubMedGoogle Scholar
  3. Alvarez, A. M. (2004). Integrated approaches for detection of plant pathogenic bacteria and diagnosis of bacterial diseases. Annual Review of Phytopathology, 42, 339–366.PubMedGoogle Scholar
  4. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R., & Stahl, D. A. (1990). Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Applied Environmental Microbiology, 56, 1919–1925.PubMedGoogle Scholar
  5. Amann, R. I., Krumholz, L., & Stahl, D. A. (1990a). Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. Journal of Bacteriology, 172, 762–770.Google Scholar
  6. Anderson, P. K., Cunningham, A. A., Patel, N. G., Morales, F. J., Epstein, P. R., & Daszak, P. (2004). Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. TRENDS in Ecology and Evolution, 19, 535-544.PubMedGoogle Scholar
  7. Aranda, M. A, Fraile, A., & Garcia-Arenal, F. (1993). Genetic Variability and Evolution of the Satellite RNA of Cucumber Mosaic Virus during Natural Epidemics. Journal of Virology, 67, 5896-5901PubMedCentralPubMedGoogle Scholar
  8. Astruc, N., Marcos, J. F., Macquaire, G., Candresse, T., & Pallas, V. (1996). Studies on the dignosis of hop stunt viroid in fruit trees: Identification of new hosts and application of a nucleic acid extraction procedure based on non-organic solvents. European Journal of Plant Pathology, 102, 837-846.Google Scholar
  9. Banowetz, G. M., Trione, E. J., & Krygier, B. B. (1984). Immunological comparison of teliospores of two wheat bunt fungi, Tilletia species, using monoclonal antibodies and antisera. Mycologia, 76, 51-62.Google Scholar
  10. Barthelet, M., Whyte, L. G. & Greer, C. W. (1996). Rapid, direct extraction of DNA from soils for PCR analysis using polyvinylpyrrolidone spin columns. FEMS Microbiology Letters, 138, 17-22.Google Scholar
  11. Behura, S. K. (2006). Molecular marker systems in insects: current trends and future avenues. Molecular Ecology, 15, 3087-3113.PubMedGoogle Scholar
  12. Benedict, A. A., Alvarez, A. M. & Pollard, L.W. (1990). Pathovar-specific antigens of Xanthomonas campestris pv. begoniae and X campestris pv. pelargonii detected with monoclonal antibodies. Applied and Environmental Microbiology, 56, 572-574.PubMedCentralPubMedGoogle Scholar
  13. Blair, M. W., Muñoz, C., Garza, R., & Cardona, C. (2006). Molecular mapping of genes for resistance to the bean pod weevil (Apion godmani Wagner) in common bean. Theoretical and Applied Genetics, 112, 913-923.PubMedGoogle Scholar
  14. Boonham, N., & Barker, I. (1998). Strain specific recombinant antibodies to potato virus Y Potyvirus. Journal of Virological Methods, 74, 193–199.PubMedGoogle Scholar
  15. Boonham, N., Smith, P., Walsh, K., Tame, J., Morris, J., Spence, N., et al. (2002). The detection of Tomato spotted wilt virus (TSWV) in individual thrips using real time fluorescent RT-PCR (TaqMan). Journal of Virologycal Methods, 101, 477-480.Google Scholar
  16. Boscia, D., Zeramdini, H., Cambra, M., Potere, O., Gorris, M. T., Myrta, A., et al. (1997). Production and characterization of a monoclonal antibody specific to the M serotype of plum pox potyvirus. European Journal of Plant Pathology, 103, 477 480.Google Scholar
  17. Bottari, B., Ercolini, D., Gatti, M. & Neviani, E. (2006). Application of FISH technology for microbiological analysis: current state and prospects. Applied Microbiology and Biotechnology, 73, 485-494.PubMedGoogle Scholar
  18. Boulton, M. I., King, D. I., Donson, J. & Davies, J. W. (1991). Point substitution in a promoter-like region and the V1 gene affect the host range and symptoms of maize streak virus. Virology, 183, 114-121.PubMedGoogle Scholar
  19. Braun-Kiewnick, A. & Sands, D. C. (2001). Pseudomonas. In: Schaad, N. W., Jones, J. B., Chun. W. (eds.). Laboratory guide for identification of plant pathogenic bacteria. APS Press, St. Paul, MN, USA, 84-120.Google Scholar
  20. Brown, J. K. (2000). Molecular markers for the identification and global tracking of whitefly vector-Begomovirus complexes. Virus Research, 71, 233-260.PubMedGoogle Scholar
  21. Brunner, P. C., Fleming, C. & Frey, J. E. (2002). A molecular identification key for economically important thrips species (Thysanoptera: Thripidae) using direct sequencing and a PCR-RFLP-based approach. Agricultural and Forest Entomology, 4, 127–136.Google Scholar
  22. Cambra, M., Camarasa, E., Gorris, M. T., Garnsey, S. M. & Carbonell, E. (1991). Comparison of different immunosorbent assays for citrus tristeza virus (CTV) using CTV-specific monoclonal and polyclonal antibodies. In: Brlansky, R. H., Lee, R. F., & Timmer, L. W. (Eds.). Proceedings XI International Organization of Citrus Virologists, IOCV, Riverside, CA, 38-45.Google Scholar
  23. Caruso P., Gorris, M. T., Cambra, M., Palomo, J. L., Collar, J., & Lopez, M. M. (2002). Enrichment double-antibody sandwich indirect enzyme-linked immunosorbent assay that uses a specific monoclonal antibody for sensitive detection of Ralstonia solanacearumin asymptomatic potato tubers. Applied and Environmental Microbiology, 68, 3634–3638.PubMedCentralPubMedGoogle Scholar
  24. Castrillo, L. A., Vandenberg, J. D., & Wraight, S. P. (2003). Strain-specific detection of introduced Beauveria bassiana in agricultural fields by use of sequence-characterized amplified region markers. Journal of Invertebrate Pathology, 82, 75-83.PubMedGoogle Scholar
  25. Che, K., Zhan, Q. C., Xing, Q. H., Wang, Z. P., Jin, D. M., He D. J. & Wang, B. (2003). Tagging and mapping of rice sheath blight resistant gene. Theoretical and Applied Genetics, 106, 293-297.PubMedGoogle Scholar
  26. Chen, J., Torrance, L., Cowan, G. H., MacFarlane, S. A., Stubbs, G., & Wilson, T. M. A. (1997). Monoclonal antibodies detect a single amino acid difference between the coat proteins of soilborne wheat mosaic virus isolates: implications for virus structure. Phytopathology, 87, 295-301.PubMedGoogle Scholar
  27. Cheryl, R., Banton, K. L., Adorada, D. L., Stark, P. C., Hill, K., & Jackson, P. (1998). Small-scale DNA sample preparation methods for field PCR detection of microbial cells and spores in soil. Applied and Environmental Microbiology, 64, 2463-2472.Google Scholar
  28. Clark, M. F., & Adams, A. N. (1977). Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. Journal of General Virology, 34, 475-483.PubMedGoogle Scholar
  29. Collard, B. C.Y., Jahufer, M. Z. Z., Brower, J. B., & Pang, E. C. K. (2005). An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica, 142, 169-196.Google Scholar
  30. De Barro, P. J., Scott, K. D., Graham, G. C., Lange, C. L., & Schutze, M. K. (2003). Isolation and characterization of microsatellite loci in Bemisia tabaci. Molecular Ecology Notes 3, 40–43.Google Scholar
  31. De Leij, F. A. A. M., Kerry, B. R., & Dennehy, J. A. (1992). The effect of fungal application rate and nematode density on the effectiveness of Verticillium chlamydosporium as a biological control agent for Meloidogyne incognita. Nematologica, 38:112-122.Google Scholar
  32. Dillon, S., Ramage, C., Ashmore, S., & Drew, R. A. (2006). Development of a codominant CAPS marker linked to PRSV-P resistance in highland papaya. Theoretical and Applied Genetics, 113, 1159-69.PubMedGoogle Scholar
  33. Elad, Y. (2000). Biological control of foliar pathogens by means of Trichoderma harzianum and potential modes of action. Crop Protection, 19, 709–714.Google Scholar
  34. Eggins, B. (1996). Biosensors - An introduction. Wiley & Teubner, Chichester.Google Scholar
  35. Esmenjaud, D., Walter, B., Minot, J. C., Voisin, R., & Cornuet, P. (1993). Biotin-avidin ELISA detection of Grapevine fanleaf virus in the vector nematode Xiphinema index. Journal of Nematology, 25, 401-405.PubMedCentralPubMedGoogle Scholar
  36. Esmenjaud, D., Abad, P., Pinck, L., & Walter, B. (1994). Detection of a region of the coat protein gene of Grapevine fanleaf virus by RT-PCR in the nematode vector Xiphinema index. Plant Disease, 78, 1087-1090.Google Scholar
  37. Espagne, E., Douris, V., Lalmanach, G., Provost, B., Cattolico, L., Lesobre, J., et al. (2005). A virus essential for insect host-parasite interactions encodes cystatins. Journal of Virology, 79, 9765-9776.PubMedCentralPubMedGoogle Scholar
  38. Fanelli, V., Cariddi, C. & Finetti-Sialer, M. (2007). Selective detection of Pseudomonas syringae pv. tomato using dot blot hybridization and real-time PCR. Plant Pathology (in press).Google Scholar
  39. Finetti Sialer, M. M., Lanave, C., Padula, M., Vovlas, C., & Gallitelli, D. (2002). Occurrence of two distinct Tomato spotted wilt virus subgroups in southern italy. Journal of Plant Pathology, 84, 145-152.Google Scholar
  40. Finetti Sialer, M., Barbarossa, L., & Gallitelli, D. (1997). Feasibility of a diagnostic kit for multiplex Dig-chemiluminescent detectoin of tomato viruses. In: Diagnosis and identification of plant pathogens. H. W. Dehne et al. (Eds). Kluwer, The Netherlands, 385-389.Google Scholar
  41. Finetti-Sialer, M. M., & Ciancio, A. (2005). Isolate-specific detection of Grapevine fanleaf virus from Xiphinema index through DNA-based molecular probes. Phytopathology, 95, 262-268.PubMedGoogle Scholar
  42. Fu, S., Zhan, Y. Zhi, H. Gai, J., & Yu, D. (2006). Mapping of SMV resistance gene Rsc-7 by SSR markers in soybean. Genetica, 128, 63-69.PubMedGoogle Scholar
  43. Gallitelli, D., & Boscia, D. (1995). Moderne tecniche diagnostiche in virologia vegetale. Petria, 5, 211-230.Google Scholar
  44. Gallitelli, D., & Saldarelli, P. (1996). Molecular identification of phytopathogenic viruses. In: Species diagnostic protocols: PCR and other nucleic acids methods. Clapp, J. P. (Ed). Methods in molecular biology, 50, Humana Press, NJ, 57-79.Google Scholar
  45. Gandeboeuf, D., Duprè, C., Roeckel-Drevet, P., Nicolas, P., & Chevalier, G. (1997). Typing Tuber ectomycorrhizae by polymerase chain amplification of the internal transcribed spacer of rDNA and the sequence characterized amplified region markers. Canadian Journal of Microbiolgy, 43, 723-728.Google Scholar
  46. Garcia, G. M., Stalker, H. T., Shroeder, E., & Kochert, G. (1996). Identification of RAPD, SCAR, and RFLP markers tightly linked to nematode resistance genes introgressed from Arachis cardenasii into Arachis hypogaea. Genome 39, 836-45.PubMedGoogle Scholar
  47. Gao, X., Jackson, T. A., Lambert, K. N., & Li, S. (2004). Detection and quantification of Fusarium solani f. sp. glycines in soybean roots with Real time quantitative chain reaction. Plant Disease, 88, 1372-1380.Google Scholar
  48. Geysen, M. H., Meloen, R. H., & Barteling, S. G. (1984). Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single aminoacid. Proceeding of the National Academy of Sciences, USA, 81, 3998-4002.Google Scholar
  49. Gore, M. A., Hayes, A. J., Jeong, S. C., Yue, Y. G., Buss, G. R. & Saghai Maroof, M. A. (2002). Mapping tightly linked genes controlling potyvirus infection at the Rsv1and Rpv1region in soybean. Genome, 45, 592-599.PubMedGoogle Scholar
  50. Gorris, M. T., Alarcon, B., Lopez, M. M., & Cambra, M. (1994). Characterization of monoclonal antibodies specific for Erwinia carotovora subsp. atroseptica and comparison of serological methods for its sensitive detection on potato tubers. Applied and Environmental Microbiology, 60, 2076–2085.PubMedCentralPubMedGoogle Scholar
  51. Greenstone, M. H. (2006). Molecular methods for assessing insect parasitism. Bulletin of Entomological Research, 96, 1-13.PubMedGoogle Scholar
  52. Griep, R. A., Van Twisk, C., Van Beckhoven, J. R. C. M., Van der Wolf, J. M. & Schots, A. (1998). Development of specific recombinant monoclonal antibodies against the lipopolysaccharides of Ralstonia solanacearum race 3. Phytopathology, 88, 795–803.PubMedGoogle Scholar
  53. Gugerli, P., & Fries, P. (1983). Characterization of monoclonal antibodies to potato virus Y and their use for virus detection. Journal of General Virology, 64, 2471-2477.Google Scholar
  54. Hammond, R.W., Crosslin, J. M., Pasini, R., Howell, W. E., & Mink, G. I. (1999). Differentiation of closely related but biologically distinct cherry isolates of Prunus necrotic ringspot virus by polymerase chain reaction. Journal of Virologycal Methods, 80, 203-212.Google Scholar
  55. Hajimorad, M. R., Dietzgen, R. G., & Francki, I. B. (1990). Differentiation and antigenic characterization of closely related alfalfa mosaic strains with monoclonal antibodies. Journal of General Virology, 71, 2809-2816.PubMedGoogle Scholar
  56. Halk, E. L., Hsu, H. T., Aebig, J., & Franke, J. (1984). Production of monoclonal antibodies against three Ilarviruses and Alfalfa Mosaic Virus and their use as serotyping reagents. Phytopathology, 74, 367-372.Google Scholar
  57. Halk, E. L., & De Boer, S. H. (1985). Monoclonal antibodies in plant disease research. Annual Review of Phytopathology, 23, 321–350.Google Scholar
  58. Hegedus, D. D., & Khachatourians, G. G. (1996). Identification and differentiation of the entomopathogenic fungus Beauveria bassiana using polymerase chain reaction and single-strand conformation polymorphism. Journal of Invertebrate Pathology, 67, 289–299.PubMedGoogle Scholar
  59. Heremans, B., Demeulenaere, S., & Haesaert, G. (2005). Suppression of Fusarium wilt by combining green compost and Trichoderma hamatum. Communications in agricultural and applied biological sciences, 70, 181-184.PubMedGoogle Scholar
  60. Hermosa, M. R., Grondona, I., Diaz-Minguez, J. M., Iturriaga, E. A., & Monte, E. (2001). Development of a strain-specific SCAR marker for the detection of Trichoderma atroviride 11, a biological control agent against soilborne fungal plant pathogens. Current Genetics, 38, 343-350.PubMedGoogle Scholar
  61. Holben, W. E., Jansson, J. K., Chelm, B. K., & Tiedje, J. M. (1988). DNA probe method for the detection of specific microorganisms in the soil bacterial community. Applied and Environmental Microbiology, 54, 703–711.PubMedCentralPubMedGoogle Scholar
  62. Holben, W. E. (1994). Isolation and purification of bacterial DNA from soil. In: Methods of soil analysis, Part 2. Microbiological and biochemical properties. Madison, USA, Soil Science Society of America, 727-751.Google Scholar
  63. Huguenot, C., Givord, I., Sommermeyer, G., & Van Regenmortel, M. H. V. (1989). Differentiation of peanut clump virus serotypes by monoclonal antibodies. Research in Virology, 140, 87-102.PubMedGoogle Scholar
  64. IAEA (2002). Mutant germplasm characterization using molecular markers. a manual. Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria, 87 pp.Google Scholar
  65. Imtiaz, M., Ahmad, M., Cromey, M. G., Griffin, W. B., & Hampton, J. G. (2004). Detection of molecular markers linked to the durable adult plant stripe rust resistance gene Yr18 in bread wheat (Triticum aestivum L.). Plant Breeding, 123, 401-404.Google Scholar
  66. Ippolito, A., El Ghaouth, A., Wilson, C. L., & Wisniewski, M. (2000). Control of postharvest decay of apple fruit by Aureobasidium pullulansand induction of defense responses. Postharvest Biology and Technology, 19, 265-272.Google Scholar
  67. Iruela, M., Rubio, J., Barro, F., Cubero, J. I., Millán, T., & Gil, J. (2006). Detection of two quantitative trait loci for resistance to Ascochyta blight in an intra-specific cross of chickpea (Cicer arietinum L.): development of SCAR markers associated with resistance. Theoretical and Applied Genetics, 112, 278-287.PubMedGoogle Scholar
  68. Jacobsen, C. S. (1995). Microscale detection of specific bacterial DNA in soil with a magnetic capture-hybridization and PCR amplification assay. Applied and Environmental Microbiology, 61, 3347–3352.PubMedCentralPubMedGoogle Scholar
  69. Jones, R. A. C. (2001). Developing integrated disease management strategies against non-persistently aphid-borne viruses: a model programme. Integrated Pest Management Review, 6, 15-46.Google Scholar
  70. Jones, R. A. C. (2004). Using epidemiological information to develop effective integrated virus disease management strategies. Virus Research, 100, 5–30.PubMedGoogle Scholar
  71. Jones, D. B., Giles, K. L., Chen, Y., & Shufran, K. A. (2005). Estimation of hymenopteran parasitism in cereal aphids using molecular markers. Journal of Economic Entomology, 98, 217-221.PubMedGoogle Scholar
  72. Kelly, J. D., Afanador, L., & Haley, S. D. (1995). Pyramiding genes for resistance to bean common mosaic virus. Euphytica, 82, 207-212.Google Scholar
  73. Kerry B. R., Simon A. & Rovira A. D. (1984). Observations on the introduction of Verticillium chlamydosporium and other prasitic fungi into soil for control of the cereal cyst nematode, Heterodera avenae. Annals of Applied Biology, 105, 509-516.Google Scholar
  74. Koheler, G., & Milstein, C. (1975). Continuous culture of fused cells secreting antibody of predefined specificity. Nature, 256, 495-497.Google Scholar
  75. Kintzios, S., Pistola, E., Konstas, J., Bem, F., Matakiadis, T., Alexandropoulos, N., et al. (2001). The application of the bioelectric recognition assay for the detection of human and plant viruses: definition of operational parameters. Biosensors & Bioelectronics, 16, 467–480.Google Scholar
  76. Klerks, M. M., Van Bruggen, A. H. C., Zijlstra, C., & Donnikov, M. (2006). Comparison of methods of extracting Salmonella enterica serovar enteritidis DNA from environmental substrates and quantification of organisms by using a general internal procedural control. Applied and Environmental Microbiology, 72, 3879-3886.PubMedCentralPubMedGoogle Scholar
  77. Koonin, E. V., & Dolja, V. V. (1993). Evolution and taxonomy of positive-strand RNA viruses: implications of comparative analysis of amino acid sequences. Critical reviews in Biochemistry and Molecular Biology, 28, 375-430.PubMedGoogle Scholar
  78. Kumar, L. S. (1999). DNA markers in plant improvement: an overview. Biotechnology Advances, 17, 143-182.PubMedGoogle Scholar
  79. Li, G. W., Shao, G. Y., Huo, Y. L., & Xu, F. Y. (1983). Discovery of and preliminary investigations on pine wood nematodes in china. Forest Science and Technology, 7, 25-28.Google Scholar
  80. Li, X., De Boer, S. H., & Ward, L. J. (1997). Improved microscopic identification of Clavivacter michiganensis subsp. sepedonicus cells by combining in situ hybridization with immunofluorescence. Letters in Applied Microbiology, 24, 431-434.PubMedGoogle Scholar
  81. Lin, C. P., & Chen, T., A. (1985). Monoclonal antibodies against the aster yellows agent. Science, 227, 1233–1235.PubMedGoogle Scholar
  82. Liu, P. G., & Yang, Q. (2005). Identification of genes with a biocontrol function in Trichoderma harzianum mycelium using the expressed sequence tag approach. Research Microbiology, 156, 416-423.Google Scholar
  83. Liu, S., Griffey, C. A., & Saghai Maroof, M. A. (2001). Identification of molecular markers associated with adult plant resistance to powdery mildew in common wheat cultivar massey. Crop Science, 41, 1268–1275.Google Scholar
  84. Louws, F. J., Rademaker, J. L. W., & De Bruijn, F. J. (1999). The three Ds of PCR-based genomic analysis of phytobacteria: diversity, detection and disease diagnosis. Annual Review of Phytopathology,37, 81–125.Google Scholar
  85. Martin, A. (1977). Introduction to soil microbiology. 2nd Ed. John Wiley and Sons. New York, 423-437.Google Scholar
  86. Martin, R. R., James, D., & Lèvesque, C. A. (2000). Impacts of molecular diagnostic technologies on plant disease management. Annual Review of Phytopathology, 38, 207–239.PubMedGoogle Scholar
  87. Massalski, P. R., & Harrison, B. D. (1987). Properties of monoclonal antibodies to potato leaf roll luteovirus and their use to distinguish virus isolates differing in aphid transmissibility. Journal of General Virology, 68, 1813-1819.Google Scholar
  88. Mackay, I. M., Arden, K. E., & Nitsche, A. (2002). Real-time PCR in virology. Nucleic Acids Research, 30, 1292-1305.PubMedCentralPubMedGoogle Scholar
  89. Mertely, J. C. & Legard, D. E. (2004). Detection, isolation, and pathogenicity of Colletotrichum spp. from strawberry petioles. Plant Disease, 88, 407-412.Google Scholar
  90. Michelmore, R. W., Paran, I., & Kesseli, R. V. (1991). Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proceedings of the ational Academy of Sciences, USA, 88, 9828-9832.Google Scholar
  91. Miura, Y. Ding, C. Ozaki, R., Hirata, M., Fujimori, M., Takahashi W., et al. (2005). Development of EST-derived CAPS and AFLP markers linked to a gene for resistance to ryegrass blast (Pyricularia sp.) in Italian ryegrass (Lolium multiflorum Lam.). Theoretical and Applied Genetics, 111, 811-818.PubMedGoogle Scholar
  92. Mota, M. M., Braasch, H., Bravo, M. A., Penas, A. C., Burgermeister, W., Metge, K., & Sousa, E. (1999). First report of Bursaphelenchus xylophilus in Portugal and in Europe. Nematology, 1, 727-734.Google Scholar
  93. Mullis, K. B., & Faloona, F. A. (1987). Specific synthesis of DNA in vitrovia a polymerase-catalyzed chain reaction. Methods in enzymology, 155, 335–351.PubMedGoogle Scholar
  94. Musetti, R., Loi, N., Carraro, L., & Ermacora, P. (2002). Application of immunoelectron microscopy techniques in the diagnosis of phytoplasma diseases. Microscopy research and technique, 56, 462-464.PubMedGoogle Scholar
  95. Nazarenko, A., Bhatnagar, S. K., & Hohman, R. J. (1997). A close tube format for amplification and detection of DNA based on energy transfer. Nucleic Acids Research, 25, 2516-2521.PubMedCentralPubMedGoogle Scholar
  96. Qi, Y., & Ding, B. (2003). Differential subnuclear localization of RNA strands of opposite polarity derived from an autonomously replicating viroid. The Plant Cell, 15, 2566-2577.PubMedCentralPubMedGoogle Scholar
  97. Roberts, I. M., & Brown, D. J. F. (1980). Detection of six nepoviruses in their nematode vectors by immunosorbent electron microscopy. Annals of Applied Biology, 96, 187-192.Google Scholar
  98. Rowhani, A., Uyemoto, J. K. Golino, D. A., & Martelli, G. P. (2005). Pathogen testing and certification of Vitis and Prunus species. Annual Review of Phytopathology, 43, 261–278.PubMedGoogle Scholar
  99. Schurko, A. M., Mendoza, L., De Cock, A. W. A. M., Bedard, J. E. J. & Klassin, G. R. (2004). Development of a species-specific probe for Pythium insidiosum and the diagnosis of pythiosis. Journal of Clinical Microbiology, 42, 2411-2418.PubMedCentralPubMedGoogle Scholar
  100. Seal, S. E., Van den Bosh, F., & Jeger, M., J. (2006). Factors influencing Begomovirus evolution and their increasing global significance: implications for sustainable control. Critical Reviews in Plant Sciences, 25, 23–46.Google Scholar
  101. Shepherd, D. N., Martin, D. P., McGivern, D. R., Boulton, M. I., Thomson, J. A., & Rybicki, E. P. (2005). A three-nucleotide mutation altering the Maize streak virus Rep pRBR-interaction motif reduces symptom severity in maize and partially reverts at high frequency without restoring pRBR-Rep binding. Journal of General Virology, 86, 803–813.PubMedGoogle Scholar
  102. Singh, R., Datta, D., Priyamvada, Singh, S., & Tiwari, R. (2004). Marker-assisted selection for leaf rust resistance genes Lr19 and Lr24 in wheat (Triticum aestivum L.). Journal of Applied Genetics, 45, 399-403.PubMedGoogle Scholar
  103. Singh, U., Trevors, C. M., De Boer, S. H., & Janse, J. D. (1999). Fimbrial-specific monoclonal antibody-based ELISA for European potato strains of Erwinia chrysanthemiand comparison to PCR. Plant Disease,84, 443–448.Google Scholar
  104. Steffan, R. J., & Atlas, R. M. (1998). DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Applied and Environmental Microbiology, 54, 2185–2191.Google Scholar
  105. Suarez, B., Rey, M., Castillo, P., Monte, E., & Llobell, A. (2004). Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Applied Microbiology Biotechnology, 65, 46-55.PubMedGoogle Scholar
  106. Thelwell, N., Millington, S., Solinas, A., Booth, J., & Brown, T. (2000). Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Research, 28, 3752-3761.PubMedCentralPubMedGoogle Scholar
  107. Tyagi, S., Bratu, D. P., & Kramer, F. R. (1998). Multicolor Molecular Beacons for allele discrimination. Nature Biotechnology, 16, 49-53.PubMedGoogle Scholar
  108. Torrance, L. (1995). Use of monoclonal antibodies in plant pathology. European Journal of Plant Pathology, 101, 351-363.Google Scholar
  109. Tsai, Y. L., & Olson, B. H. (1992). Detection of low numbers of bacterial numbers in soils and sediments by polymerase chain reaction. Applied and Environmental Microbiology. 58, 754–757.PubMedCentralPubMedGoogle Scholar
  110. Uehara, T., Kushida, A., & Momota,Y. (1999). Rapid and sensitive identification of Pratylenchus spp. using reverse dot blot hybridization. Nematology, 1, 549-555.Google Scholar
  111. Velasco-Garcia, M. N., & Mottram, T. (2003). Biosensor technology addressing agricultural problems. Biosystems Engineering, 84, 1-12.Google Scholar
  112. Werner, K., Friedt, W., Laubach, E., Waugh, R. & Ordon, F. (2003). Dissection of resistance to soil-borne yellow mosaic inducing viruses of barley (BaMMV, BaYMV, BaYMV-2) in a complex breeders cross by SSRs and simultaneous mapping of BaYMV/BaYMV-2 resistance of ‘Chikurin Ibaraki 1’. Theoretical and Applied Genetics, 106, 1425-1432.PubMedGoogle Scholar
  113. Werner, K., Pellio, B., Ordon, F., & Friedt, W. (2000). Development of an STS marker and SSRs suitable for marker-assisted selection for the BaMMV resistance gene rym9in barley. Plant Breeding, 119, 517-519.Google Scholar
  114. Whitcombe, D., Theaker, J., Guy, S. P., Brown, T., & Little, S. (1999). Detection of PCR products using self-probing amplicons and fluorescence. Nature Biotechnology, 17, 804-807.PubMedGoogle Scholar
  115. Wullings, B. A., Van Beuningen, A. R., Janse, J. D., & Akkermans, A. D. L. (1998). Detection of Ralstonia solanacearum, which causes brown rot of potato, by fluorescent in situ hybridization with 23S rRNA-targeted probes Applied And Environmental Microbiology, 64, 4546–4554.Google Scholar
  116. Xia, Y., Magarey, R., Suiter, K., & Stinner, R. (2007). Applications of information technology in IPM. In: General concepts in integrated pest and disease management. Ciancio, A. & Mukerji, K. G. (Eds.). Springer, The Netherlands, 205-222.Google Scholar
  117. Yeates, C., Gillings, M. R., Davison, A. D., Altavista, N., & Veal, D. A. (1997). PCR amplification of crude microbial DNA extracted from soil. Letters in Applied Microbiology, 25, 303-307.PubMedGoogle Scholar
  118. Zeilinger, S., Reithner, B., Scala, V., Peissl, I., Lorito, M., & Mach R. L. (2005). Signal transduction by Tga3, a novel G protein alpha subunit of Trichoderma atroviride. Applied and Environmental Microbiology, 71, 1591-1597.PubMedCentralPubMedGoogle Scholar
  119. Zhang, L., Liu, X., Zhu, S., & Chen, S. (2006). Detection of nematophagous fungus Hirsutella rhossiliensis in soil by real-time PCR and parasitism bioassay. Biological Control, 36, 316-323.Google Scholar
  120. Zhou, W., Kolb, F. L., Yu, J., Bai, G., Boze, L. K., & Domier, L. L. (2004). Molecular characterization of Fusarium head blight resistance in Wangshuibai with simple sequence repeat and amplified fragment length polymorphism markers. Genome, 47, 1137–1143.PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • M.M. Finetti Sialer
    • 1
  • L. Rosso
    • 2
  1. 1.Dipartimento di Protezione delle Piante e Microbiologia ApplicataUniversitá degli StudiBariItaly
  2. 2.Istituto per la Protezione delle PianteConsiglio Nazionale delle Ricerche70126 BariItaly

Personalised recommendations