Advertisement

3D MHD Simulations of Laboratory Plasma Jets

  • A. Ciardi
  • S.V. Lebedev
  • A. Frank
  • E. G. Blackman
  • D. J. Ampleford
  • C. A. Jennings
  • J. P. Chittenden
  • T. Lery
  • S. N. Bland
  • S. C. Bott
  • G. N. Hall
  • J. Rapley
  • F. A. Suzuki Vidal
  • A. Marocchino
Conference paper

Abstract

Jets and outflows are thought to be an integral part of accretion phenomena and are associated with a large variety of objects. In these systems, the interaction of magnetic fields with an accretion disk and/or a magnetized central object is thought to be responsible for the acceleration and collimation of plasma into jets and wider angle flows. In this paper we present three-dimensional MHD simulations of magnetically driven, radiatively cooled laboratory jets that are produced on the MAGPIE experimental facility. The general outflow structure comprises an expanding magnetic cavity which is collimated by the pressure of an extended plasma background medium, and a magnetically confined jet which develops within the magnetic cavity. Although this structure is intrinsically transient and instabilities in the jet and disruption of the magnetic cavity ultimately lead to its break-up, a well collimated, “knotty” jet still emerges from the system; such clumpy morphology is reminiscent of that observed in many astrophysical jets. The possible introduction in the experiments of angular momentum and axial magnetic field will also be discussed.

Keywords

MHD plasmas Accretion Accretion discs Laboratory astrophysics Winds Jets and outflows 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akiyama, S., Wheeler, J.C., Meier, D.L., Lichtenstadt, I.: The Magnetorotational instability in core-collapse supernova explosions. Astrophys. J. 584, 954–970 (2003)CrossRefADSGoogle Scholar
  2. Ampleford, D.J., Lebedev, S.V., Ciardi, A., Bland, S.N., Bott, S.C., Chittenden, J.P., Hall, G., Jennings, C.A., Armitage, J., Blyth, G., Christie, S., Rutland, L.: Formation of working surfaces in radiatively cooled laboratory jets. Astrophys. Space Sci. 298, 241–246 (2005)MATHCrossRefADSGoogle Scholar
  3. Begelman, M.C., Blandford, R.D., Rees, M.J.: Theory of extragalactic radio sources. Rev. Mod. Phys. 56, 255–351 (1984)CrossRefADSGoogle Scholar
  4. Blandford, R.D., Payne, D.G.: Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. Roy. Astron. Soc. 199, 883–903 (1982)MATHADSGoogle Scholar
  5. Chittenden, J.P., Lebedev, S.V., Jennings, C.A., Bland, S.N., Ciardi, A.: X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches. Plasma Phy. Contr. Fus. 46, B457–76 (2004)CrossRefGoogle Scholar
  6. Ciardi, A., Lebedev, S.V., Chittenden, J.P., Ampleford, D.J., Bland, S.N., Bott, B.S., Rapley, J.: Modeling magnetic tower jets in the laboratory. Astrophys. Space Sci. 298, 277–286 (2005)MATHCrossRefADSGoogle Scholar
  7. Ciardi, A., Lebedev, S.V., Chittenden, J.P., Bland, S.N.: Modeling of supersonic jet formation in conical wire array Z-pinches. Laser Part Beams. 20, 255–262 (2002)CrossRefADSGoogle Scholar
  8. Contopoulos, J., Lovelace, R.V.E.: Magnetically driven jets and winds: exact solutions. Astrophys. J. 429, 139 (1994)CrossRefADSGoogle Scholar
  9. Galama, T.J., Vreeswijk, P.M., van Paradijs, J., Kouveliotou, C., Augusteijn, T., Bohnhardt, H., Brewer, J.P., Doublier, V., Gonzalez, J-F, Leibundgut, B., Lidman, C., Hainaut, O.R., Patat, F., Heise, J., in’t Zand, J., Hurley, K., Groot, P.J., Strom, R.G., Mazzali, P.A., Iwamoto, K., Nomoto, K., Umeda, H., Nakamura, T., Young, T.R., Suzuki, T., Shigeyama, T., Koshut, T., Kippen, M., Robinson, C., de Wildt, P., Wijers, R.A.M.J., Tanvir, N., Greiner, J., Pian, E., Palazzi, E., Frontera, F., Masetti, N., Nicastro, L., Feroci, M., Costa, E., Piro, L., Peterson, B.A., Tinney, C., Boyle, B., Cannon, R., Stathakis, R., Sadler, E., Begam, M.C., Ianna, P.: An unusual supernova in the error box of the gamma-ray burst of 25 April 1998. Nature 395, 670–672 (1998)CrossRefADSGoogle Scholar
  10. Goodson, A.P., Boehm, K.H., Winglee, R.M.: Jets from accreting magnetic young stellar objects. I. Comparison of observations and high-resolution simulation results. Astrophys. J. 524, 142–158 (1999)CrossRefADSGoogle Scholar
  11. Goodson, A.P., Winglee, R.M.: Jets from accreting magnetic young stellar objects. II. Mechanism physics. Astrophys. J. 524, 159–168 (1999)CrossRefADSGoogle Scholar
  12. Hartigan, P., Morse, J.A., Reipurth, B., Heathcote, S., Bally, J.: Proper motions of the Hh 111 jet observed with the Hubble space telescope. Astrophys. J. 559, L157–L162 (2001)CrossRefADSGoogle Scholar
  13. Kato, Y., Hayashi, M.R., Matsumoto, R.: Formation of semirelativistic jets from magnetospheres of accreting neutron stars: Injection of hot bubbles into a magnetic tower. Astrophys. J. 600, 338–342 (2004a)CrossRefADSGoogle Scholar
  14. Kato, Y., Mineshige, S., Shibata, K.: Magnetohydrodynamic accretion flows: Formation of magnetic tower jet and subsequent quasisteady state. Astrophys. J. 605, 307–320 (2004b)CrossRefADSGoogle Scholar
  15. Khokhlov, A.M., Höflich, P.A., Oran, E.S., Wheeler, J.C., Wang, L., Chtchelkanova, A.Y.: Jet-induced explosions of core collapse supernovae. Astrophys. J. 524, L107–L110 (1999)CrossRefADSGoogle Scholar
  16. Kudoh, T., Matsumoto, R., Shibata, K.: Are jets ejected from locally magnetized accretion disks? Publications Astron. Soc. Jpn. 54, 267–274 (2002)ADSGoogle Scholar
  17. Lebedev, S.V., Ampleford, D., Ciardi, A., Bland, S.N., Chittenden, J.P., Haines, M.G., Frank, A., Blackman, E.G., Cunningham, A.: Jet deflection via crosswinds: Laboratory astrophysical studies. Astrophys. J. 616, 988–997 (2004)CrossRefADSGoogle Scholar
  18. Lebedev, S.V., Beg, F.N., Bland, S.N., Chittenden, J.P., Dangor, A.E., Haines, M.G., Kwek, K.H., Pikuz, S.A., Shelkovenko, T.A.: Effect of discrete wires on the implosion dynamics of wire array Z pinches. Phy. Plasmas 8, 3734–3747 (2001)CrossRefADSGoogle Scholar
  19. Lebedev, S.V., Chittenden, J.P., Beg, F.N., Bland, S.N., Ciardi, A., Ampleford, D., Hughes, S., Haines, M.G., Frank, A., Blackman, E.G.: Laboratory astrophysics and collimated stellar outflows: The production of radiatively cooled hypersonic plasma jets. Astrophys. J. 564, 113–119 (2002)CrossRefADSGoogle Scholar
  20. Lebedev, S.V., Ciardi, A., Ampleford, D.J., Bland, S.N., Bott, S.C., Chittenden, J.P., Hall, G.N., Rapley, J., Jennings, C., Sherlock, M., Frank, A., Blackman, E.G.: Production of radiatively cooled hypersonic plasma jets and links to astrophysical jets. Plasma Phys. Contr. Fus. 47, 465–B479 (2005a)CrossRefGoogle Scholar
  21. Lebedev, S.V., Ciardi, A., Ampleford, D.J., Bland, S.N., Bott, S.C., Chittenden, J.P., Hall, G.N., Rapley, J., Jennings, C.A., Frank, A., Blackman, E.G., Lery, T.: Magnetic tower outflows from a radial wire array Z-pinch. Mon. Not. Roy. Astron. Soc. 361, 97–108 (2005b)CrossRefADSGoogle Scholar
  22. LeBlanc, J.M., Wilson, J.R.: A numerical example of the collapse of a rotating magnetized star. Astrophys. J. 161, 541 (1970)CrossRefADSGoogle Scholar
  23. Lynden-Bell, D.: Magnetic collimation by accretion discs of quasars and stars. Monthly Notice—Roy. Astron. Soc. 279, 389–401 (1996)ADSGoogle Scholar
  24. Lynden-Bell, D.: On why discs generate magnetic towers and collimate jets. Mon. Not. Roy. Astron. Soc. 341, 1360–1372 (2003)CrossRefADSGoogle Scholar
  25. MacFadyen, A.I., Woosley, S.E.: Collapsars: Gamma-ray bursts and explosions in “failed supernovae”. Astrophys. J. 524, 262–289 (1999)CrossRefADSGoogle Scholar
  26. Ouyed, R., Pudritz, R.E., Stone, J.M.: Episodic jets from black holes and protostars. Nature 409–414 (1997)Google Scholar
  27. Pelletier, G., Pudritz, R.E.: Hydromagnetic disk winds in young stellar objects and active galactic nuclei. Astrophys. J. 394, 117–138 (1992)CrossRefADSGoogle Scholar
  28. Piran, T.: The physics of gamma-ray bursts. Rev. Modern Phys. 76, 1143–1210 (2005)CrossRefADSGoogle Scholar
  29. Pudritz, R.E., Norman, C.A.: Bipolar hydromagnetic winds from disks around protostellar objects. Astrophys. J. 301, 571–586 (1986)CrossRefADSGoogle Scholar
  30. Reipurth, B., Bally, J.: Herbig-Haro flows: Probes of early stellar evolution. Ann. Rev. Astron. Astrophys. 39 403–455 (2001)CrossRefADSGoogle Scholar
  31. Remington, B.A.: High energy density laboratory astrophysics. Plasma Phys. Contr. Fus. 47, A191–A204 (2005)CrossRefADSGoogle Scholar
  32. Shu, F., Najita, J., Ostriker, E., Witkin, F.: Magnetocentrifugally driven flows from young stars and disks. I. A generalized model. Astrophys. J. 429, 781 (1994)CrossRefADSGoogle Scholar
  33. Stanek, K.Z., Matheson, T., Garnavich, P.M., Martini, P., Berlind, P., Caldwell, N., Challis, P., Brown, W.R., Schild, R., Krisciunas, K., Calkins, M.L., Lee, J.C., Hathi, N., Jansen, R.A., Windhorst, R., Echevarria, L., Eisenstein, D.J., Pindor, B., Olszewski, E.W., Harding, P., Holland, S.T., Bersier, D.: Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329. Astrophys. J. 591, L17–L20 (2003)CrossRefADSGoogle Scholar
  34. Uchida, Y., Shibata, K.: Magnetodynamical acceleration of CO and optical bipolar flows from the region of star formation. Publ. Astron. Soc. Jpn. 37, 515–535 (1985)ADSGoogle Scholar
  35. Ustyugova, G.V., Koldoba, A.V., Romanova, M.M., Chechetkin, V.M., Lovelace, R.V.E.: Magnetocentrifugally driven winds: Comparison of MHD simulations with theory. Astrophys. J. 516, 221–235 (1999)CrossRefADSGoogle Scholar
  36. Ustyugova, G.V., Lovelace, R.V.E., Romanova, M.M., Li, H., Colgate, S.A.: Poynting jets from accretion disks: Magnetohydrodynamic simulations. Astrophys. J. 541, L21–L24 (2000)CrossRefADSGoogle Scholar
  37. Wardle, M., Koenigl, A.: The structure of protostellar accretion disks and the origin of bipolar flows. Astrophys. J. 410, 218 (1993)CrossRefADSGoogle Scholar
  38. Wheeler, J.C., Meier, D.L., Wilson, J.R.: Asymmetric supernovae from magnetocentrifugal jets. Astrophys. J. 568, 807–819 (2002)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  • A. Ciardi
    • 1
    • 2
  • S.V. Lebedev
    • 2
  • A. Frank
    • 3
    • 4
  • E. G. Blackman
    • 3
    • 4
  • D. J. Ampleford
    • 6
  • C. A. Jennings
    • 6
  • J. P. Chittenden
    • 2
  • T. Lery
    • 5
  • S. N. Bland
    • 2
  • S. C. Bott
    • 2
  • G. N. Hall
    • 2
  • J. Rapley
    • 2
  • F. A. Suzuki Vidal
    • 2
  • A. Marocchino
    • 2
  1. 1.Observatoire de Paris et UMR 8102 du CNRSLUTHMeudonFrance
  2. 2.The Blackett LaboratoryImperial CollegeLondonUK
  3. 3.Department of Physics and AstronomyUniversity of RochesterRochesterUSA
  4. 4.Laboratory for Laser EnergeticsUniversity of RochesterRochesterUSA
  5. 5.Dublin Institute for Advanced StudiesDublinIreland
  6. 6.Sandia National LaboratoryAlbuquerqueUSA

Personalised recommendations