Comparison of Five Numerical Schemes for Fractional Differential Equations

  • Om Prakash Agrawal
  • Pankaj Kumar

This paper presents a comparative study of the performance of five different numerical schemes for the solution of fractional differential equations.

Keywords

Beach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mainardi F (1997) Fractional calculus: some basic problem in continuum and statistical mechanics, In: Fractals and Fractional Calculus in Continuum Mechanics. Carpinteri, A. Mainardi, F (eds.), Springer, Wein, New York, pp. 291-348.Google Scholar
  2. 2.
    Rossikhin YA, Shitikova MV (1997) Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 50:15-67.CrossRefGoogle Scholar
  3. 3.
    Podlubny I (1999) Fractional Differential Equations. Academic Press, New York.MATHGoogle Scholar
  4. 4.
    Hilfer R (2000) Applications of Fractional Calculus in Physics. World Scientific, New Jersey.MATHGoogle Scholar
  5. 5.
    West BJ, Bologna M, Grigolini P (2003) Physics of Fractal Operators. Springer, New York.Google Scholar
  6. 6.
    Magin RL (2004) Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 32(1):1-104.CrossRefGoogle Scholar
  7. 7.
    Magin RL (2004) Fractional calculus in bioengineering - Part 2. Crit. Rev. Biomed. Eng. 32(2):105-193.CrossRefGoogle Scholar
  8. 8.
    Magin RL (2004) Fractional calculus in bioengineering - Part 3. Crit. Rev. Biomed. Eng. 32(3/4):194-377.Google Scholar
  9. 9.
    Miller KS, Ross B (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York.MATHGoogle Scholar
  10. 10.
    Gaul L, Klein P, Kempfle S (1989) Impulse response function of an oscillator with fractional derivative in damping description. Mech. Res. Commun. 16(5):4447-4472.CrossRefGoogle Scholar
  11. 11.
    Suarez LE, Shokooh A (1997) An eigenvector expansion method for the solution of motion containing fractional derivatives. ASME. J. Appl. Mech. 64:629-635.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Yuan L, Agrawal OP (2002) A numerical scheme for dynamic systems containing fractional derivatives. Transactions of the ASME, J. Vib. Acoust. 124:321-324.CrossRefGoogle Scholar
  13. 13.
    Machado JAT (2001) Discrete-time fractional-order controllers. FCAA J. 4:47-66.MATHGoogle Scholar
  14. 14.
    Heleschewitz D, Matignon D (1998) Diffusive Realizations of Fractional inte- grodifferential Operators: Structural Analysis Under Approximation, in: Proceedings IFAC Conference System, Structure and Control, Nantes, France, 2:243-248.Google Scholar
  15. 15.
    Aoun M, Malti R, Levron F, Oustaloup A (2003) Numerical simulation of fractional systems, in: Proceedings of DETC2003, 2003 ASME Design Engineering Technical Conferences, September 2-6, Chicago, Illinois.Google Scholar
  16. 16.
    Poinot T, Trigeassou J (2003) Modeling and simulation of fractional systems using a non integer integrator, in: Proceedings of DETC2003, 2003 ASME Design Engineering Technical Conferences, September 2-6, Chicago, Illinois.Google Scholar
  17. 17.
    Padovan J (1987) Computational algorithms and finite element formulation involving fractional operators. Comput. Mech. 2:271-287.MATHCrossRefGoogle Scholar
  18. 18.
    Gorenflo R (1997) Fractional calculus: some numerical methods In: Carpinteri A, Maincardi, F (eds.), Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wein, New York, pp. 277-290.Google Scholar
  19. 19.
    Ruge P, Wagner N (1999) Time-domain solutions for vibration systems with feding memory. European Conference of Computational Mechanics, Munchen, Germany, August 31 September 3.Google Scholar
  20. 20.
    Diethelm K, Ford NJ (2002) Analysis of fractional differential equations. J. Math. Anal. Appl. 265:229-248.MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Diethelm K, Ford NJ, Freed AD (2002) A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics 29(1-4): 3-22.MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Diethelm K (2003) Efficient solution of multi-term fractional differential equation using P(EC)mE methods. Computing 71:305-319.MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Diethelm K, Ford NJ (2004) Multi-order fractional differential equations and their numerical solution. Appl. Math. Comput. 154(3):621-640.MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Diethelm K, Ford NJ, Freed AD, Luchko Y (2005) Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mechan. Eng. 194:743-773.MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Agrawal OP (2004) Block-by-Block Method for Numerical Solution of Fractional Differential Equations, in: Proceedings of IFAC2004, First IFAC Workshop on Fractional Differentiation and Its Applications. Bordeaux, France, July 19-21.Google Scholar
  26. 26.
    Kumar P, Agrawal OP (2005) A Cubic Scheme for Numerical Solution of Fractional Differential Equations, in: Proceedings of the Fifth EUROMECH Nonlinear Dynamics Conference, Eindhoven University of Technology, Eindhoven, The Netherland, August 7-12.Google Scholar
  27. 27.
    Kumar P, Agrawal OP (2005) Numerical Scheme for the Solution of Fractional Differential Equations, in: Proceedings of the 2005 ASME Design Engineering Technical Conferences and Computer and Information Engineering Conference, Long Beach, California, September 24-28.Google Scholar
  28. 28.
    Sabatier J, Malti R(2004) Simulation of Fractional Systems: A Benchmark, in: Proceedings of IFAC2004, First IFAC Workshop on Fractional Differentiation and Its Applications. Bordeaux, France, July 19-21.Google Scholar
  29. 29.
    Lorenzo CF, Hartley TT (2000) Initialized fractional calculus. Int. J. Appl. Math. 3:249-265.MATHMathSciNetGoogle Scholar
  30. 30.
    Achar BN, Lorenzo CF, Hartley TT (2005) Initialization issue of the Caputo fractional derivative, in: Proceedings of the2005 ASME Design Engineering Technical Conferences, Long Beach, California, September 24-28.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Om Prakash Agrawal
    • 1
  • Pankaj Kumar
    • 1
  1. 1.Mechanical EngineeringSouthern Illinois UniversityCarbondaleUSA

Personalised recommendations