Robustness of Fractional-order Boundary Control of Time Fractional Wave Equations with Delayed Boundary Measurement Using the Simple Predictor

  • Jinsong Liang
  • Weiwei Zhang
  • YangQuan Chen
  • Igor Podlubny

In this paper, we analyse the robustness of the fractional wave equation with a fractional-order boundary controller subject to delayed boundary measurement.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Morgül Ö (2002) An exponential stability result for the wave equation, Automatica, 38:731-735.MATHCrossRefGoogle Scholar
  2. 2.
    Morgül Ö (2001) Stabilization and disturbance rejection for the beam equation, IEEE Trans. Auto. Control, 46(12):1913-1918.MATHCrossRefGoogle Scholar
  3. 3.
    Conrad F, Morgül Ö (1998) On the stability of a flexible beam with a tip mass, SIAM J. Control Optim. 36(6):1962-1986.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Morgül Ö (1998) Stabilization and disturbance rejection for the wave equation, IEEE Trans. Auto. Control, 43(1):89-95.MATHCrossRefGoogle Scholar
  5. 5.
    Guo B-Z (2001) Riesz basis approach to the stabilization of a flexible beam with a tip mass, SIAM J. Control Optim., 39(6):1736-1747.CrossRefMathSciNetGoogle Scholar
  6. 6.
    Guo B-Z (2002) Riesz basis property and exponential stability of controlled euler- bernoulli beam equations with variable coefficients, SIAM J. Control Optim., 40(6):1905-1923.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chen G (1979) Energy decay estimates and exact boundary value controllability for the wave equation in a bounded domain, J. Math. Pure. Appl., 58:249-273.MATHGoogle Scholar
  8. 8.
    Chen G, Delfour MC, Krall AM, Payre G (1987) Modelling, stabilization and control of serially connected beams, SIAM J. Contr. Optimiz., 25:526-546.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Morgül Ö (2002) On the boundary control of beam equation, In: Proceedings of the 15-th IFAC World Congress on Automatic Control.Google Scholar
  10. 10.
    Datko R, Lagnese J, Polis MP (1986) An example on the effect of time delays in boundary feedback stabilization of wave equations, SIAM J. Control Optim., 24:152-156.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Datko R (1993) Two examples of ill-posedness with respect to small time delays in stabilized elastic systems, IEEE Trans. Auto. Control, 38(1):163-166.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Logemann H, Rebarber R (1998) PDEs with distributed control and delay in the loop: transfer function poles, exponential modes and robustness of stability, Eur. J. Control, 4(4):333-344.MATHGoogle Scholar
  13. 13.
    Logemann H, Rebarber R, Weiss G (1996) Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop, SIAM J. Control Optim., 34(2):572-600.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Morgül Ö (1995) On the stabilization and stability robustness against small delays of some damped wave equations, IEEE Trans. Auto. Control, 40(9):1626-1623.MATHCrossRefGoogle Scholar
  15. 15.
    Liang J, Zhang W, Chen Y (2005) Robustness of boundary control of damped wave equations with large delays at boundary measurement, In: The 16th IFAC World Congress.Google Scholar
  16. 16.
    Nigmatullin RR (1986) Realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Sol. (b), 133:425-430.CrossRefGoogle Scholar
  17. 17.
    Matignon D, d’Andréa-Novel B (1995) Spectral and time-domain consequences of an integro-differential perturbation of the wave PDE, In: SIAM proceedings of the third international conference on mathematical and numerical aspects of wave propagation phenomena, France, pp. 769-771.Google Scholar
  18. 18.
    Liang J, Chen YQ, Fullmer R (2003) Simulation studies on the boundary stabilization and disturbance rejection for fractional diffusion-wave equation, In:2004 IEEE American Control Conference.Google Scholar
  19. 19.
    Caputo M (1967) Linear models of dissipation whose q is almost frequency independent-II, Geophys. J. R. Astronom. Soc., 13:529-539.Google Scholar
  20. 20.
    Podlubny I (1999) Fractional Differential Equations. Academic Press, San Diego, CA.MATHGoogle Scholar
  21. 21.
    Smith OJM (1957) Closer control of loops with dead time, Chem. Eng. Progress, 53(5):217-219.Google Scholar
  22. 22.
    Levine W (ed.) (1996) The Control Handbook. CRC Press, Boca Raton, FL, pp. 224-237.MATHGoogle Scholar
  23. 23.
    Wang Q-G, Lee TH, Tan KK (1999) Finite Spectrum Assignment for Time-delay Systems. Springer, London.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Jinsong Liang
    • 1
  • Weiwei Zhang
    • 2
  • YangQuan Chen
    • 3
  • Igor Podlubny
    • 4
  1. 1.Center for Self-Organizing and Intelligent Systems (CSOIS)Utah State UniversityLogan
  2. 2.Department of MathematicsMichigan State UniversityEast Lansing
  3. 3.Department of Electrical and Computer EngineeringUtah State UniversityLogan
  4. 4.Department of Information and Control of ProcessesTechnical University of KosiceSlovak Republic

Personalised recommendations