Fractional Damping: Stochastic Origin and Finite Approximations

  • Satwinder Jit Singh
  • Anindya Chatterjee

Fractional-order derivatives appear in various engineering applications including models for viscoelastic damping. Damping behavior of materials, if modeled using linear, constant coefficient differential equations, cannot include the long memory that fractional-order deriative require.


Fractional Derivative Galerkin Projection Galerkin Procedure Reentrant Corner Finite Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vlad MO, Schönfisch B, Mackey MC (1996) Phys. Rev. E 53(5):4703-4710.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Chatterjee A (2005) J. Sound Vib. 284:1239-1245.CrossRefGoogle Scholar
  3. 3.
    Oustaloup A, Levron F, Mathieu B, Nanot F (2000) IEEE Trans. Circ. Syst. I: Fundamental Theory and Applications 47(1):25-39.CrossRefGoogle Scholar
  4. 4.
    Chen Y, Vinagre BM, Podlubny I (2004) Nonlinear Dynamics 38:155-170.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Yuan L, Agrawal OP (2002) J. Vib. Acoust. 124:321-324.CrossRefGoogle Scholar
  6. 6.
    Schmidt A, Gaul L (2006) Mech. Res. Commun. 33(1):99-107.CrossRefGoogle Scholar
  7. 7.
    Singh SJ, Chatterjee A (2005) Nonlinear Dynamics (in press).Google Scholar
  8. 8.
    Finlayson BA (1972) The Method of Weighted Residuals and Variational Principles. Academic Press, New York.MATHGoogle Scholar
  9. 9.
  10. 10.
    Ford NJ, Simpson AC (2001) Numer. Algorithms 26:333-346.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Satwinder Jit Singh
    • 1
  • Anindya Chatterjee
    • 1
  1. 1.Mechanical Engineering DepartmentIndian Institute of ScienceBangaloreIndia

Personalised recommendations