Solute Spreading in Heterogeneous Aggregated Porous Media

  • Kira Logvinova
  • Marie Christine Néel

Solute spreading is studied, in saturated but heterogeneous porous media. The solid matrix is assumed to be composed of bounded obstacles, and the logarithm of the porosity is supposed to be represented by a three-dimensional random process. The latter appears as a parameter in the equation, ruling solute spreading, on the small scale. The concentration of solute, averaged with respect to the process, satisfies an equation which resembles Fourier’s law, except that it involves a term, non-local with respect to time.


Porous Medium Fractional Derivative Fractional Calculus Heterogeneous Porous Medium Continuous Time Random Walk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Matheron G, de Marsily G (1980) Is transport in porous media always diffusive? A counterexample, Water Resour. Res., 16(5):901-917.CrossRefGoogle Scholar
  2. 2.
    Muralidhar R, Ramkrishna D (1993) Diffusion in pore fractals, Trans. Porous Media, 13(1):79-95.CrossRefGoogle Scholar
  3. 3.
    Gelhar LW (1993) Stochastic Subsurface Hydrology. Prentice-Hall, New Jersey, USA.Google Scholar
  4. 4.
    Hanyga A (2004) Two-fluid flow in a single temperature approximation, Int. J. Eng. Sc., 42:1521-1545.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Montroll EW, West BJ (1965) Random walks on lattices II, J. Math. Phys. 6:167-181.CrossRefGoogle Scholar
  6. 6.
    Compte A (1996) Stochastic foundations of fractional dynamics, Phys. Rev., E, 53(4):4191-4193.CrossRefGoogle Scholar
  7. 7.
    Henry BI, Wearne SL (2000) Fractional reaction diffusion, Physica A, 276:448-455.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Scalas E, Gorenflo R, Mainardi F (2004) Uncoupled continuous time random walk: solution and limiting behaviour of the master equation. Phys. Rev. E, 692(2):011107.CrossRefMathSciNetGoogle Scholar
  9. 9.
    Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A Math. Gen., 37:R161-R208.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Erochenkova G, Lima R (2000) On a tracer flow trough packed bed, Physica A, 275:297-309.CrossRefGoogle Scholar
  11. 11.
    Erochenkova G, Lima R (2001) A fractional diffusion equation for a porous medium, Chaos, 11(3):495-499.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Klyatskin VI (1980) Stochastic equations and waves in randomly hetero- geneous media (in Russian) Nauka, Moscow. Ondes et équations stochastiques dans les milieux aléatoirement non homogènes. 1985. Editions de Physique, Paris.Google Scholar
  13. 13.
    Furutsu K (1963) On the statistical theory of electromagnetic waves in fluctuating medium (I), J. Res. Nat. Bur. Stand. D. Radio Propagation, 67 D(3):303-323.MATHGoogle Scholar
  14. 14.
    Logvinova K, Néel MC (2004) A fractional equation for anomalous diffusion in a randomly heterogeneous porous medium, Chaos, 14(4):982-987.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Zheltov YV, Morozov VP, Dutishev VN (1990) About the mechanism of thermocyclic intensifications of mass transfer into metall melts. Izvestia Akademii Nauk USSR. Metalli 5:31.Google Scholar
  16. 16.
    Whitaker S (1999) The Method of Volume Averaging, Theory and Applications of Transport in Porous Media. Kluwer Academic, Dordrecht.Google Scholar
  17. 17.
    Dean DS, Drummond IT, Horgan RR (1994) Perturbation schemes for flow in random media, J. Phys. A Math. Gen., 27:5135-5144.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Bouchaud JP, Georges A (1990) Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications, Phys. Rep., 195 (4-5):127-293.CrossRefMathSciNetGoogle Scholar
  19. 19.
    Stepanyants YA, Teodorovich EV (2003) Effective hydraulic conductivity of a randomly heterogeneous porous medium, Water Resour. Res., 39(3):12 (1-11).CrossRefGoogle Scholar
  20. 20.
    Kleinert H (1989) Gauge Fields in Condensed Matter, Vol. I. World Sientific, Singapore.MATHGoogle Scholar
  21. 21.
    Samko SG, Kilbas AA, Marichev OI (1993) Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York.MATHGoogle Scholar
  22. 22.
    Gorenflo R, Mainardi F (1997) Fractional calculus, integral and differential equations of fractional order. In: Carpinteri A, Mainardi F (eds.), Fractals and Fractional Calculus in Continuum Mechanics. CISM courses and lectures 378. Springer, New York, pp. 223-276.Google Scholar
  23. 23.
    Podlubny I (1999) Fractional Differential Equations. Academic Press, San Diego.MATHGoogle Scholar
  24. 24.
    Hilfer R (2002) Review on scale dependent characterization of the micro- structure of porous media, Trans. Porous Media, 46:373-390.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Kira Logvinova
    • 1
  • Marie Christine Néel
    • 2
  1. 1.“Climat, Sol, Environnement” INRA-UAPVUMRAFrance
  2. 2.Sol et Environnement INRA-UAPVUMR ClimatFrance

Personalised recommendations