Advertisement

X-Ray Laser Thomson Scattering at 21 nm of Laser-Heated High-Density Foil Plasmas

  • B. Rus
  • J. Dunn
  • T. Mocek
  • A. J. Nelson
  • M. E. Foord
  • R. Shepherd
  • W. Rozmus
  • H. A. Baldis
  • M. Kozlová
  • J. Polan
  • P. Homer
  • M. Stupka
Part of the Springer Proceedings in Physics book series (SPPHY, volume 115)

Summary

Results of our preliminary studies for a demonstration of soft X-ray laser Thomson scattering in laser-produced dense plasma are presented. The investigated plasmas are produced by single-side heated foil targets using a 300-ps pulse of 438-nm wavelength at irradiances between 1013 and 1014 Wcm-2. The Nelike zinc X-ray laser, delivering ~ 1 mJ of focused energy at 21.2 nm, is injected to the plasma as the Thomson probe. The X-ray laser pulse is timed to arrive to the plasma 0.5 or 1 ns after the peak of the optical pulse, encountering electron densities in the range of 1020–1022 cm-3. The spectrum near 21 nm, emitted at ~ 30°with respect to the incident X-ray laser, is analyzed by a flat-field spectrometer viewing through the back of the target. The results show that the choice of appropriate target material and thickness are essential to the success of this experiment. From the spectroscopic measurements using Al and polypropylene (C3H6) foils, the latter appears as a suitable candidate for Thomson scattering experiments near 21 nm. A weak spectral feature near 21.2 nm potentially indicating Thomson scattering was observed using a 1.2 μm polypropylene foil. Further data analysis is required to support this conclusion.

Keywords

Lawrence Livermore National Laboratory Laser Irradiance Thomson Scattering National Ignition Facility Solid Density Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    La Fontaine, B. et al: Characterization of laser-produced plasmas by ultraviolet Thomson scattering, Phys. Plasmas 1, 2329, 1994.CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Riley, D. et al: X-Ray Diffraction from a Dense Plasma, Phys. Rev. Lett. 84, 1704, 2000.CrossRefADSGoogle Scholar
  3. 3.
    Glenzer, S.H., et al: Demonstration of Spectrally Resolved X-Ray Scattering in Dense Plasmas, Phys. Rev. Lett. 90, 175002, 2003.CrossRefADSGoogle Scholar
  4. 4.
    Baldis, H.A., Dunn, J., Foord, M.E., Rozmus, W.: Thomson scattering diagnostic of solid density plasmas using x-ray lasers, Rev. Sci. Instr. 73, 4223, 2002.CrossRefADSGoogle Scholar
  5. 5.
    Rus, B.j et al: Multimillijoule, highly coherent x-ray laser at 21 nm operating in deep saturation through double-pass amplification, Phys. Rev. A 66, 063806, 2002.CrossRefADSGoogle Scholar
  6. 6.
    Salpeter, E.E., Electron Density Fluctuations in a Plasma, Phys. Rev. 120, 1528, 1960.CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Marinak, M. M. et al.: Three-dimensional HYDRA simulations of National Ignition Facility targets, Phys. Plasmas 8, 2275, 2001.CrossRefADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • B. Rus
    • 1
  • J. Dunn
    • 2
  • T. Mocek
    • 3
  • A. J. Nelson
    • 2
  • M. E. Foord
    • 2
  • R. Shepherd
    • 2
  • W. Rozmus
    • 3
  • H. A. Baldis
    • 4
  • M. Kozlová
    • 1
  • J. Polan
    • 1
  • P. Homer
    • 1
  • M. Stupka
    • 1
  1. 1.Institute of Physics / PALS Centre18221 Prague 8Czech Republic
  2. 2.Lawrence Livermore National LaboratoryCA 94551
  3. 3.University of AlbertaT6G 2J1
  4. 4.Department of Applied ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations