LASERIX : A Multi X-Ray/XUV Beamline High Repetition-Rate Facility

  • D. Ros
  • G. Jamelot
  • M. Pittman
  • F. Plé
  • S. Kazamias
  • A. Klisnick
  • J-C. Lagron
  • K. Cassou
  • O. Guilbaud
  • J-P. Chambaret
  • S. Sebban
  • P. Zeitoun
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 115)

Summary

LASERIX is a high-power laser facility intended to realize and use for applications transient collisional X-ray laser (XRL) beamlines at various wavelengths. In addition new types of XRL schemes giving rise to emission at short wavelengths will be developed using the high energy LASERIX driver. Thus, this laser facility will both offer Soft XRLs in the 30-7 nm range and auxiliary IR beam that could also be used to produce XUV sources. This experimental configuration highly enhances the scientific opportunities of the facility. Indeed it will be possible to realize both X-ray laser experiments and more generally pump/probe experiments, mixing IR and XUV sources. Then, this laser facility will be useful for the community, opening a large scale of XUV laser investigations.

Keywords

Recombination Coherence Refraction Sapphire 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.L. Matthews et al, Phys. Rev. Lett. 54, 110, 1985CrossRefADSGoogle Scholar
  2. 2.
    L.I. Gudzenko et al., Sov. Phys. Doklady 10, 147, 1965ADSGoogle Scholar
  3. 3.
    R.C. Elton, Appl. Optics 14, 97, 1975ADSCrossRefGoogle Scholar
  4. 4.
    D. Ros et al, Laser ans Particle Beams Journal, 20, 23,.2002CrossRefADSGoogle Scholar
  5. 5.
    B. Rus et al., Phys. Rev. A 55, 3858-73, (1997)CrossRefADSGoogle Scholar
  6. 6.
    S. Sebban et al., Phys. Rev. Letters, 86, 3004-7, (2001)CrossRefADSGoogle Scholar
  7. 7.
    P.V. Nickles et al., Phys. Rev. Lett. 78, 2748, 1997CrossRefADSGoogle Scholar
  8. 8.
    A. Klisnick et al., J.O.S.A. B 17, 1093, 2000CrossRefADSGoogle Scholar
  9. 9.
    G. Jamelot et al., in X-Ray Lasers 2004, IOP Conf Series N° 186, 677 (2005)Google Scholar
  10. 10.
    P. Zeitoun et al., Nature 431, 426, (2004)CrossRefADSGoogle Scholar
  11. 11.
    D. Di Cicco et al., Opt. Lett. 17, 157, (1992).ADSCrossRefGoogle Scholar
  12. 12.
    R.E. Burge, et al., Opt. Lett. 18, 66, (1993).CrossRefGoogle Scholar
  13. 13.
    D.H. Kalantar et al., Phys. Rev. Lett. 76, 3574, (1996).CrossRefADSGoogle Scholar
  14. 14.
    D. Joyeux et al., J. Phys IV France 11, Pr2, 511, (2001).CrossRefGoogle Scholar
  15. 15.
    A. Klisnick et al, J.O.S.A. B 17, 1093, (2000).CrossRefADSGoogle Scholar
  16. 16.
    H. Tang et al., Appl. Phys. B 78, 975, (2004).CrossRefADSGoogle Scholar
  17. 17.
    The CD ROM of contributions to the workshop is available :david.ros@lixam.u-psud.frGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • D. Ros
    • 1
    • 2
  • G. Jamelot
    • 1
    • 2
  • M. Pittman
    • 1
    • 2
  • F. Plé
    • 1
    • 2
    • 3
  • S. Kazamias
    • 1
    • 2
  • A. Klisnick
    • 1
    • 2
  • J-C. Lagron
    • 1
    • 2
  • K. Cassou
    • 1
    • 2
  • O. Guilbaud
    • 1
    • 2
  • J-P. Chambaret
    • 4
  • S. Sebban
    • 4
  • P. Zeitoun
    • 4
  1. 1.Univ. Paris-Sud, LIXAM, UMR n° 8624Bacirc;timent 350
  2. 2.CNRS, LIXAM
  3. 3.Amplitude TechnologiesCE2926,Evry, F-91029
  4. 4.LOA, UMR n° 7639, ENSTA / CNRS / Ecole Polytechnique91761 Palaiseau cedexFrance

Personalised recommendations